Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Extrem harte Kohlenstoffschichten unter Fertigungsbedingungen abscheidbar

11.06.2008
Extrem harte Kohlenstoffschichten lassen sich im PVD-Verfahren abscheiden, nach dem Laser-Arc-Prinzip, wobei für die Steuerung der Bogenentladung auf der Kathodenoberfläche ein Pulslaser ausreichend ist. Dieser Laser ist nicht nur kostengünstig, es wird auch ein sehr homogener Abtrag und damit eine hohe Ausnutzung des Kathodenwerkstoffs erreicht. So erzielt man lange Standzeiten, die das Abscheiden der wasserstofffreien DLC-Schichten für Serien wirtschaftlich macht.

Schätzungen zufolge gehen jedes Jahr rund 2 bis 3% des Bruttosozialprodukts durch Verschleiß verloren [1]. Das entspricht einer Summe von 48 bis 73 Mrd. Euro für Deutschland im Jahr 2007. Ferner führt eine Reibung zu großen energetischen Maschinenverlusten. Bei einem Automobil beträgt der Verlust der Motorleistung vom Weg der Leistungserzeugung bis zur Umsetzung auf der Straße 25%.

Amorphe Kohlenstoffschichten haben sich schnell etabliert

Daher hielten diamantähnliche amorphe Kohlenstoffschichten rasch Einzug in die industrielle Praxis. Aufgrund der einzigartigen Kombination von hoher Härte, niedrigem Reibungskoeffizienten (trocken: 0,1 gegen Kugellagerstahl) und geringer Klebeneigung zu metallischen Gegenkörpern werden sie in vielen Anwendungen zur Minderung von Verschleiß und Reibung eingesetzt.

Teilweise ermöglichen sie überhaupt erst, neuartige technische Lösungen zu entwickeln. So konnten verbrauchsenkende Hochdruckeinspritzsysteme für Dieselmotoren beim Automobilzulieferer Bosch erst entwickelt und in den Markt eingeführt werden, als DLC-Schichten (diamond-like carbon) zur Verfügung standen.

Extrem harte Kohlenstoffschichten mit etablierter Anlagentechnik herstellbar

Ein weiterer Grund für die rasche Markteinführung von DLC-Schichten liegt im Prozess der Feststoffabscheidung. Sie erfolgt durch Zersetzung von Kohlenwasserstoffen in einem plasmagestützten CVD-Prozess. Das kann – bei kleinen Modifikationen – mit einer etablierten Anlagentechnik zur Abscheidung von klassischen Hartstoffschichten wie TiN und CrN erfolgen. Bei diesem Verfahren wird auch Wasserstoff in die Schicht eingebaut (a-C:H), was die Härte auf Werte von 2000 bis 3000 HV begrenzt.

Eine neue Generation von DLC-Schichten stellen die wasserstofffreien, tetraedrisch gebundenen amorphen Kohlenstoffschichten dar (ta-C). Sie werden im PVD-Verfahren durch Verdampfen von Graphit abgeschieden. Dabei wird ein hochionisiertes Plasma von einer festen Kohlenstoffquelle erzeugt.

Aufgrund der spezifischen Verfahrensführung und der Abwesenheit von Wasserstoff im Prozess sind die Kohlenstoffatome wie im Diamant überwiegend in Viererkoordination (tetraedrisch) gebunden. So haben diese Schichten mit 4000 bis 6000 HV eine zwei- bis dreimal höhere Härte als klassische DLC-Schichten, was sich in einer deutlich höheren Verschleißbeständigkeit wiederspiegelt.


Anwendungspotenzial der Kohlenstoffschichten basiert auf drei Vorteilen
Aus der höheren Verschleißbeständigkeit, dem niedrigen Reibungskoeffizienten und der geringen Klebeneigung zu Metallen resultiert eine Reihe potenzieller Anwendungen, etwa bei Lager- und Gleitelementen, Zerspan- und Umformwerkzeugen:

-Aufgrund einer DLC-Beschichtung (ta-C) von Lager- und Gleitelementen kann die Reibung im System Nockenwelle-Tassenstößel um etwa 45% reduziert werden [2]. Eine Gleitlager-Werkstoffpaarung Stahl-Kunststoff ermöglicht durch Beschichten der Stahlschiene, den linearen Verschleiß am Kunststoff-Gegenkörper von 4 auf 1 mm Abrieb im Jahr zu senken. Auch die Elastomerdichtungen von Fülllanzen und Kolbenstangen verschleißen weniger, wenn der Gegenkörper aus Stahl beschichtet ist. Außerdem können Wellen oder Wellenschutzhülsen vorteilhaft beschichtet werden. Bei Mangelschmierung mindert eine DLC-Beschichtung (ta-C) die Gefahr des Fressens, insbesondere dort, wo nicht geschmiert werden darf, wie in der Lebensmittelindustrie.

-Mit DLC-beschichteten Zerspanwerkzeugen ist eine Hochgeschwindigkeitsbearbeitung möglich. So erreichen ta-C-beschichtete Hartmetallbohrer bei Aluminium eine Standzeitverbesserung um den Faktor 5 im Vergleich zu TiAlN-beschichteten Bohrern (Legierung Al 6061, Trockenbearbeitung, vc 180 m/min, f 0,3 mm) [3]. Der Spanablauf ist verbessert, es bilden sich keine Aufbauschneiden. Weitere Untersuchungen in den vergangenen Jahren bestätigten diese Ergebnisse. Auch beim Zerspanen von GFK wird eine Standzeitverbesserung erzielt.

-Sind Umformwerkzeuge zum Tiefziehen von Videolaufwerksteilen aus verzinktem Stahl (RRSt4, 80 Hub/min) mit DLC beschichtet, ist ein Schmiermittelwechsel möglich. Das Schmiermittel kann durch ein leicht flüchtiges Konservierungsmittel ersetzt werden, so dass die Reinigung der Teile vor dem Verbauen entfällt. Zudem lässt sich die Standzeit der Werkzeuge verzehnfachen, wie erste Anwendungen zeigten. Vorteilhaft ist auch die geringe Adhäsionsneigung von Kohlenstoffschichten gegenüber Metallen. Streifenziehversuche zur Untersuchung des Umformverhaltens bei 1,2 mm dickem Aluminiumblech zeigen, dass man aufgrund der DLC-Beschichtung (ta-C) des Werkzeugs auf das Beölen verzichten kann (Bild 2) [4]. Entsprechende Anwendungen konnten erfolgreich in der Praxis realisiert werden. Durch eine ta-C-Beschichtung lässt sich das Umformen besonders von leicht schmierenden Blechwerkstoffen wie Aluminium, Kupfer und Edelstahl sicherer gestalten.

Technik für extrem harte Kohlenstoffschichten in der Vergangenheit zu teuer

Diesem breiten Anwendungspotenzial von DLC-Schichten in der Form ta-C stand jedoch bisher eine fehlende industriell einsetzbare Beschichtungstechnik entgegen. Einerseits kann zwar durch Verwendung eines Pulslasers ein hochionisiertes Plasma für die ta-C-Abscheidung (Pulsed Laser Deposition: PLD) bei einer sehr guten Prozesskontrolle erzeugt werden, doch ist diese Technik kostenaufwändig und wenig effizient.

Andererseits lassen sich beim Einsatz von Vakuumbogenquellen (Vacuum Arc Deposition: VAD) hohe Abscheidungsraten erzielen, jedoch ist der Ausnutzungsgrad der Kathoden und damit deren Standzeit sehr begrenzt, was einer industriellen Nutzung entgegensteht.

Durch Verwendung eines kostengünstigen Pulslasers zur zeitlichen und örtlichen Steuerung der Bogenentladung auf einer Kathodenoberfläche (Laser-Arc-Prinzip) wurde am Fraunhofer-Institut für Werkstoff- und Strahltechnik (IWS) in Dresden ein Verfahren entwickelt, das die Vorteile von PLD und VAD in sich vereint. Dabei wird mit Hilfe eines Laserpulses auf einer rotierenden Graphitwalze, die als Kathode geschaltet ist, ein stromstarker Bogen mit Spitzenströmen von etwa 1,8 kA gezündet, dessen Dauer auf 130 µs begrenzt ist.

Dieser zyklische Prozess wiederholt sich tausendmal in der Sekunde. Aufgrund der Walzenrotation und der linearen Ablenkung des Laserstrahls über die gesamte Länge der Walze hinweg wird ein derart homogener Abtrag erreicht, dass sich Kathoden monatelang unverändert einsetzen und dabei konstante Beschichtungsbedingungen gewährleisten lassen. Bei hohen Folgefrequenzen (bis zu 1 kHz) werden industriell attraktive Beschichtungsraten von rund 1 µm in der Stunde erreicht [5].

Ein weiterer Vorteil liegt in den sehr niedrigen Prozesstemperaturen (unter 180 °C). Das ermöglicht das Abscheiden von haftfesten Schichten auch auf temperaturempfindlichen Grundwerkstoffen wie Kaltarbeitsstählen: ohne Verzug oder Härteverlust. Weil sogar mit Abscheidungstemperaturen unter 100 °C gearbeitet werden kann, eignet sich dieses Verfahren auch für die Kunststoffbeschichtung.

Abscheidungstechnik in Form eines Moduls nachrüstbar

Diese effiziente Abscheidungstechnik wurde am Fraunhofer IWS in Form eines kompakten Moduls (Laser-Arc-Modul: LAM) umgesetzt. Sie lässt sich mit Hilfe eines standardisierten Rechteckflanschs an jede handelsübliche Beschichtungsanlage andocken.

Das LAM-System besteht aus der Quellenkammer mit einer 400 mm langen Kohlenstoffwalze, aus dem Pulslaser (Nd-YAG-Laser mit Q-Switch), aus einer eigens entwickelten Pulsstromquelle und einer Steuereinheit, die einen automatisierten Betrieb der Kohlenstoffquelle gewährleistet. Dabei ist sie über eine Profibus-Schnittstelle in die Steuerung der Basisanlage eingebunden.

Diese Entwicklung hat den Vorteil, dass sich die Möglichkeiten der Basisanlage uneingeschränkt nutzen und in beliebiger Weise mit der Laser-Arc-Technik verknüpfen lassen. Das ermöglicht neuartige Schichtsysteme auf Basis der superharten DLC-Schichten (ta-C), wobei die Produktivität mit der einer klassischen Hartstoffabscheidung vergleichbar ist.

Die Markteinführung basierte auf der Integration eines LAM-Moduls in die Beschichtungsanlage Flexi-Coat 1000 des niederländischen Herstellers Hauzer Techno Coating BV. Bild 3 zeigt, wie das LAM anstelle eines Standardkathodenflansches in die Anlage integriert ist, die mittlerweile an einen industriellen Anwender geliefert wurde. Dieses Beispiel zeigt, dass der Erschließung des breiten potenziellen Anwendungsspektrum superharter DLC-Schichten (ta-C) nun nichts mehr im Wege steht.

Literatur

[1] Tietema, R., C. Strondl und T. Krug: Equipment design aspects of large scale automotive applications. Vortag 2006.

[2] Y. Yasuda, M., M. Kano, M. Mabuchi und S. Abou: Paper 2003-01-1101. SAE World Congress and Axhibition, März 2003 in Detroit/USA, March 2003, SAE International.

[3] Scheibe, H.-J.: Diamor-Schichten für die Hochgeschwindigkeits-Trockenbearbeitung von Leichtmetallen und Präzisionsbearbeitung von Buntmetallen. In: Jahresbericht 2001, Dresden: Fraunhofer-Institut Werkstoff- und Strahltechnik, S. 36–37.

[4] Brückner, A.: Abscheidung und Charakterisierung kohlenstoffbasierter PVD-Schichten auf Werkzeugen für die schmierstofffreie Aluminium- und Magnesiumblechumformung. Diplomarbeit TU Dresden 2006

[5] Scheibe, H.-J.: Superharte Kohlenstoffschichten in der Serie. JOT 2007/4.

Dr. Volker Weihnacht und Dr. Hans-Joachim Scheibe leiten die Arbeitsgruppe PVD- und Nanotechnologie am Fraunhofer-Institut für Werkstoff und Strahltechnik (IWS) in Dresden, Dr.-Ing. Thomas Stucky ist Leiter Dünnschichttechnik der Fraunhofer-Projektgruppe im Dortmunder Oberflächen-Centrum der Thyssen-Krupp Steel AG in 44120 Dortmund.

Hans-Joachim Scheibe, Volker Wei | MM MaschinenMarkt
Weitere Informationen:
http://www.maschinenmarkt.vogel.de/themenkanaele/produktion/oberflaechentechnik/articles/124013/

Weitere Berichte zu: DLC-Schicht Kohlenstoffschicht

Weitere Nachrichten aus der Kategorie Maschinenbau:

nachricht Luftturbulenzen durch Flugzeuge bald beherrschbar
08.12.2017 | Universität Rostock

nachricht Ein MRT für Forscher im Maschinenbau
23.11.2017 | Universität Rostock

Alle Nachrichten aus der Kategorie: Maschinenbau >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Stabile Quantenbits

Physiker aus Konstanz, Princeton und Maryland schaffen ein stabiles Quantengatter als Grundelement für den Quantencomputer

Meilenstein auf dem Weg zum Quantencomputer: Wissenschaftler der Universität Konstanz, der Princeton University sowie der University of Maryland entwickeln ein...

Im Focus: Realer Versuch statt virtuellem Experiment: Erfolgreiche Prüfung von Nanodrähten

Mit neuartigen Experimenten enträtseln Forscher des Helmholtz-Zentrums Geesthacht und der Technischen Universität Hamburg, warum winzige Metallstrukturen extrem fest sind

Ultraleichte und zugleich extrem feste Werkstoffe – poröse Nanomaterialien aus Metall versprechen hochinteressante Anwendungen unter anderem für künftige...

Im Focus: Geburtshelfer und Wegweiser für Photonen

Gezielt Photonen erzeugen und ihren Weg kontrollieren: Das sollte mit einem neuen Design gelingen, das Würzburger Physiker für optische Antennen erarbeitet haben.

Atome und Moleküle können dazu gebracht werden, Lichtteilchen (Photonen) auszusenden. Dieser Vorgang verläuft aber ohne äußeren Eingriff ineffizient und...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

Hohe Heilungschancen bei Lymphomen im Kindesalter

07.12.2017 | Veranstaltungen

Der Roboter im Pflegeheim – bald Wirklichkeit?

05.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Goldmedaille für die praktischen Ergebnisse der Forschungsarbeit bei Nutricard

11.12.2017 | Unternehmensmeldung

Nachwuchs knackt Nüsse - Azubis der Friedhelm Loh Group für Projekte prämiert

11.12.2017 | Unternehmensmeldung

Mit 3D-Zellkulturen gegen Krebsresistenzen

11.12.2017 | Medizin Gesundheit