Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nano-Schichten verleihen Kunststoffteilen metallähnliche Eigenschaften

28.05.2008
Auf der Kunststoffmesse K 2007 hat Du Pont die Nanometall-Kunststoff-Hybridtechnik Meta Fuse vorgestellt.

Damit lassen sich Bauteile herstellen, die einerseits die Festigkeit und Steifigkeit von Metallen haben, andererseits eine hohe Gestaltungsfreiheit und ein niedriges Gewicht, wie bei Hochleistungskunststoffen, ermöglichen. Dabei stellt sie die traditionellen Kunststoff-Metall-Hybridverfahren „auf den Kopf“.

Die Nanometall-Kunststoff-Hybridtechnik Meta Fuse ist eine Gemeinschaftsentwicklung von Du Pont, Morph Technologies und Integran Technologies (beide Kanada) sowie von Powermetal Technologies (USA). Bei diesem Verfahren wird eine ultrahochfeste Metallschicht mit geringer Dicke auf Bauteile aus technischen Kunststoffen aufgebracht.

Diese Teile können komplex geformt sein. Das Ergebnis sind leichte Komponenten, die im Vergleich mit Magnesium- oder Aluminiumteilen eine ähnliche Steifigkeit und sogar eine höhere Festigkeit erreichen. Die nanokristalline Mikrostruktur des Metalls bewirkt eine Festigkeit, die sich mit konventionellen Beschichtungsverfahren nicht erreichen lässt.

Die mittlere Korngröße der Metalle ist mit etwa 20 nm rund tausendmal kleiner als die von herkömmlichen Metallen. Die Festigkeit liegt um das Zwei- bis Dreifache über denen von typischen Stählen und Nickel-Chrom-Beschichtungen.

Nanometallschicht erhöht die Steifigkeit

Aufgrund der extrem hohen Festigkeit der nanokristallinen Metalle reichen relativ dünne Schichten von 25 bis 200 µm Dicke aus, um hochfeste Kunststoff-Metall-Hybridteile herzustellen. Mittels konventioneller chemischer oder elektrochemischer Beschichtung oder der Gasphasenabscheidung (CVD) ist dies nicht möglich.

Bei der Entwicklung der Nanometall-Kunststoff-Hybridtechnik Meta Fuse kamen spezielle technische Kunststoffe und Verfahren von Du Pont zur Anwendung. Das Außergewöhnliche dabei ist: Das Metall wird an der Stelle aufgebracht, an der es die Steifigkeit maximal steigert.

Bei einer Biege- oder Torsionsbelastung ist das die Bauteilaußenhaut. Sie ist am weitesten von der „neutralen Faser“ entfernt. Dort sind die Zug- und Druckspannungen maximal, die sich proportional mit dem Abstand von der neutralen Faser erhöhen.

Genau an dieser Stelle kommen die herausragenden mechanischen Eigenschaften der Nanometalle optimal zur Wirkung. Die Biegesteifigkeit des Bauteils steigt, denn sie ist das Produkt aus E-Modul und Flächenträgheitsmoment. Letzterer Faktor wächst dabei exponentiell mit dem Abstand der Beschichtung von der neutralen Faser.

Torsionssteifigkeit steigt mit der Biegesteifigkeit

Analog gilt dies auch für die Torsionssteifigkeit und -festigkeit. In beiden Fällen hat also eine auf der Bauteiloberfläche befindliche Nanometallschicht den maximalen Einfluss auf die Bauteilbelastbarkeit.

Zum Bestimmen der Bauteileigenschaften wurden Versuche mit unterschiedlichen technischen Kunststoffen als Substratwerkstoff vorgenommen. Bild 3 zeigt den typischen Anstieg der mechanischen Kennwerte anhand von Prüfungen mit spritzgegossenen ISO-Zugstäben aus dem Polyamid Zytel (PA66) von Du Pont. Der Kunststoff ist mit 25 Gew.-% Glasfasern verstärkt und hat eine 100 µm dicke Oberflächenschicht aus einer nanokristallinen Nickel-Eisen-Legierung.

Im Vergleich zum unbeschichteten Kunststoff steigen der Biegemodul und die Schlagfestigkeit um das Zwei- bis Vierfache. Die tatsächlichen Werte hängen stark von der Probengeometrie, Metallschichtdicke und dem Substratwerkstoff ab. So ist die Zugfestigkeit eine direkte Funktion der verwendeten Metallmenge.

Darüber hinaus haben die Tests gezeigt, dass die Nanometall-Kunststoff-Hybridteile ihre sehr guten mechanischen Eigenschaften auch bei Temperaturen behalten, bei denen unbeschichtete Kunststoffe deutliche Einbußen verzeichnen. Die von Du Pont gemessenen Daten lassen erwarten, dass die Meta-Fuse-Technik eine Anwendung von Kunststoffen bei Bauteilen ermöglicht, die mechanisch und thermisch hoch beansprucht werden.

So lässt sich aufgrund der Beschichtung mit nanokristallinen Metallen die Dauergebrauchstemperatur von Kunststoffteilen um 50 bis 75 °C erhöhen. Allerdings werden diese Ergebnisse – wie bereits erwähnt – vom verwendeten Substratwerkstoff abhängen.

Selektive Beschichtung ist meist ausreichend

Viele praktische Anwendungen erfordern keine Nanometall-Rundumbeschichtung. Oft reicht eine gezielte selektive Beschichtung aus, um die gewünschte Festigkeit oder andere Eigenschaften zu erreichen. Das vereinfacht die Beschichtung von Bauteilen mit komplexen Konturen, die in konventionellen Verfahren nur schwierig und teuer zu metallisieren sind.

Bisher hat man sich bei diesen Teilen meist auf das Erreichen der erforderlichen Festigkeit und Steifigkeit konzentriert.

Die Nanometall-Kunststoff-Hybridtechnik Meta Fuse ermöglicht, weitere Eigenschaften zu optimieren, zum Beispiel die Verschleißfestigkeit, die Kriechbeständigkeit, die elektrische Leitfähigkeit, das chemische Verhalten, die elektromagnetische Abschirmung, die verminderte Permeabilität für Gase und Flüssigkeiten sowie die UV- und Hydrolysebeständigkeit.

Daraus resultieren vielfältige Anwendungsmöglichkeiten, zum Beispiel im Automobilbau und der Unterhaltungselektronik. So kann die Nanometall-Kunststoff-Hybridtechnik eine Vielzahl an Fahrzeugteilen funktionell und dekorativ aufwerten, wie Motorölwannen, Zylinderkopfhauben, Wasser- und Hydraulikpumpen, Dichtungssysteme, Zahnriemenspanner, Getriebegehäuse und -komponenten, Kraftstoffeinspritzleisten, Elektromotorengehäuse, Lenksäulenfixierungen und Fahrwerksteile, aber auch Rahmen und Gehäuse für Mobiltelefone sowie Fahrradteile. Dabei zielt Du Pont weniger auf große, einfach aufgebaute, lasttragende Strukturen, weil die Substitution gestanzter Blechteile nicht kosteneffizient wäre.

Stattdessen sucht man nach sinnvollen Anwendungen bei multifunktionalen Bauteilen, deren mechanische und thermische Belastungen die Möglichkeiten thermoplastsicher Kunststoffe überschreiten oder die in der Gestaltung eingeschränkt sind. Ein weiteres Anwendungspotenzial bietet die Substitution von Metallteilen, die aus mehreren Einzelteilen zusammengeschweißt werden. Auch bei Gussteilen mit hohem Nachbearbeitungsaufwand kann die Nanometall-Kunststoff-Hybridtechnik Metafuse eine Alternative sein.

Mike Day ist Technical Manager beim US-amerikanischen Kunststofferzeuger Du Pont Engineering Polymers in Wilmington/Delaware. Hubert Müller ist Leiter Marktentwicklung Industrial & Consumer Zentraleuropa bei der Du Pont de Nemours (Deutschland) GmbH in 61352 Bad Homburg.

Mike Day und Hubert Müller | MM MaschinenMarkt
Weitere Informationen:
http://www.maschinenmarkt.vogel.de/themenkanaele/konstruktion/werkstoffe/articles/122735/

Weitere Berichte zu: Kunststoff Nanometall-Kunststoff-Hybridtechnik

Weitere Nachrichten aus der Kategorie Maschinenbau:

nachricht Flexible Fertigung von Elektromotoren für Fahrzeuge
06.09.2017 | Karlsruher Institut für Technologie

nachricht Gewicht von Robomotion-Greifer um 60 Prozent reduziert
31.07.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

Alle Nachrichten aus der Kategorie: Maschinenbau >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Höher - schneller - weiter: Der Faktor Mensch in der Luftfahrt

20.09.2017 | Veranstaltungen

Wälder unter Druck: Internationale Tagung zur Rolle von Wäldern in der Landschaft an der Uni Halle

20.09.2017 | Veranstaltungen

7000 Teilnehmer erwartet: 69. Urologen-Kongress startet heute in Dresden

20.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Drohnen sehen auch im Dunkeln

20.09.2017 | Informationstechnologie

Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen

20.09.2017 | Biowissenschaften Chemie

Frühwarnsystem für gefährliche Gase: TUHH-Forscher erreichen Meilenstein

20.09.2017 | Energie und Elektrotechnik