Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bauteile selektiv mit dem Diodenlaser härten

19.08.2009
Beim Laserstrahlhärten mit Hochleistungsdiodenlasern wird der Laserstrahl durch ein optisches System gebündelt und kann gezielt die zukünftigen Verschleißzonen am Bauteil abfahren. Wegen des geringen Wärmemengeneintrags und der hohen Prozessgeschwindigkeit benötigt der Prozess keine zusätzlichen Medien zur Abschreckung.

Richtet man die Strahlung von Hochleistungsdiodenlasern direkt auf die Bauteiloberfläche, so erhitzt der Laserstrahl die dünne Oberflächenschicht des Bauteils kurzzeitig bis zur Austenitisierungstemperatur des Stahls (werkstoffabhängig, zwischen 900 und 1400 °C). Dabei ist die Schmelztemperatur eine kritische Größe, weil die Temperaturanstiegsgeschwindigkeit weit über 1000 °C pro Sekunde beträgt.

Laserhärten benötigt nur kurze Haltezeit des Laserstrahls auf dem Werkstoff

Im Verfahren wird der Laserstrahl mittels eines optischen Systems gebündelt und beispielsweise zukünftige Verschleißzonen werden am Bauteil damit abgefahren. Die wechselbaren Optikeinstellungen ermöglichen es, den Laserstrahl so einzustellen, dass die erzeugte Härtespur genau der Werkstückgeometrie angepasst werden kann. Weil der Härtungsprozess nur dort stattfindet, wo der Laserstrahl auf das Material trifft, ist eine exakte Begrenzung auf die Verschleißbereiche möglich.

Das Verfahren benötigt nur eine sehr kurze Haltezeit des Laserstrahls auf dem Werkstoff. Infolge des geringen Wärmemengeneintrags, der hohen Prozessgeschwindigkeit und der raschen Wärmeableitung in das Bauteilinnere kommt es zur Selbstabschreckung der behandelten Fläche, sobald der Wärmeeintrag beendet ist. Dies führt zum Einfrieren des Härtegefüges, im Ergebnis liegt die Härte um den Faktor zwei bis drei über der des unbehandelten Werkstoffes.

Die Einhärtetiefe hängt von vielen Faktoren ab, unter anderem von der Beschaffenheit des Bauteils und der damit verbundenen Selbstabschreckung. Die Laserstrahlhärtung ist für alle flamm- und induktivhärtbaren Werkstoffe einsetzbar. Sowohl Stahl als auch Stahlguss können mit diesem Verfahren gehärtet werden. Stahl kann mehr als 2 mm, Gusswerkstoffe können mehr als 1 mm tief eingehärtet werden. Die Voraussetzung für den Härtevorgang ist ein Mindestkohlenstoffgehalt im Gefüge von 0,25%. Zur Gewährleistung einer konstanten Randschichthärte muss der Werkstoff ein vergütetes Gefüge aufweisen. Beispiele für gut härtbare Werkstoffe sind C45, Cf53, 100Cr6, 42CrMo4, X155CrVMo12-1 oder GGG60.

Das Laserhärten bietet vielfältige Vorteile

Gerade für den Maschinenbau spielt die Zeitersparnis eine große Rolle, die durch die genau spezifizierte Härtfläche erreicht wird. Im Gegensatz zur üblichen Gesamtbehandlung des Bauteils bei der konventionellen Härtung kann das Laserhärten selektiv genau an der Stelle eingesetzt werden, an der die zusätzliche Härtung benötigt wird.

Durch die erhebliche Reduktion der Wärmemenge, die in das Bauteil eingebracht wird, entstehen weit weniger Komplikationen. Vor allem der sonst übliche thermische Verzug wird erheblich minimiert. Auch im Vergleich zur Induktionshärtung sind zahlreiche Vorteile zu nennen, wie etwa die höhere Genauigkeit der Härtespur auf der Bauteiloberfläche, die Einsatzmöglichkeit auch bei 3D-Freiformflächen oder die geringere elektrische Anschlussleistung der Gesamtanlage.

Die genannten Aspekte ermöglichen eine deutliche Kostensenkung. Weitere deutliche Kosten- und Zeit-ersparnis entsteht durch die Verringerung oder den kompletten Wegfall von Nacharbeit am Bauteil. Auch beim Energiebedarf entstehen durch die kurzen Erwärmungszeiten beim Laserhärten deutliche Kosteneinsparungseffekte. Die Prozesskontrolle durch die Laserleistungsregelung Lompoc-Pro und die kamerabasierte Temperaturerfassung liefern eine gleichbleibend hohe Produktqualität.

Laserhärten schon bei kleineren Losgrößen wirtschaftlich

Durch die hohe Flexibilität des Verfahrens ist die Wirtschaftlichkeit schon bei kleineren Losgrößen gegeben. Auch bei Umweltaspekten kann das Verfahren punkten. Der Prozess benötigt keine zusätzlichen Medien zur Abschreckung, damit entsteht keine Umweltbelastung durch Abwässer oder Öle.

Zusammenfassend kann für den Maschinenbau gesagt werden, dass das Laserstrahlhärten ein Verfahren zum gezielten Verbessern des Verschleißverhaltens von Bauteilen ist. Da Umformwerkzeuge und Pressformen einem erhöhten Verschleiß unterliegen, bietet es sich an, diese Bauteile mittels Laser randschichtzuhärten.

Alotec ist beim Laserhärten in zwei Feldern tätig: Zum einen werden im Haus individuelle Einzelhärtearbeiten im Kundenauftrag durchgeführt. Zum anderen bietet das Unternehmen Planung, Lieferung, Aufbau und Betreuung von Laserhärteanlagen an, die je nach Spezifikation konfiguriert und beim Kunden in Betrieb genommen werden.

Roboter, Diodenlaser, Laserleistungsregelung und eine Software als Hauptkomponenten

Hauptkomponenten der von Alotec hergestellten Laserhärteanlagen sind ein Roboter, ein Diodenlaser, eine temperaturabhängige Laserleistungsregelung und eine Software zur externen Programmierung der Anlage. Der Roboter in unterschiedlichen Größen bietet die nötige Flexibilität bei der Anpassung an Kundenanforderungen hinsichtlich des Arbeitsraumes und der gewünschten Einsatzposition des Laserstrahles am Bauteil. Die Skalierbarkeit des Roboters ermöglicht eine individuelle Anpassung der Laserhärteanlage an die Bauteilgröße bei einem vergleichsweise geringen Preis.

Die Laserquelle ist ein direktstrahlender oder fasergekoppelter Diodenlaser mit Ausgangsleistungen von 1 bis 10 kW. Die Vorteile im Vergleich zu anderen Laserquellen liegen im rechteckigen Strahlprofil mit homogener Energieverteilung, dem hohen Absorptionsgrad des Wellenlängenbereichs gegenüber Stahl sowie einem Wirkungsgrad von über 50%.

Scannersystems macht Härtespurbreiten auch während des Härtungsprozesses variabel

Mit einfach auszutauschenden Wechseloptiken können Härtespurbreiten von wenigen Millimetern bis zu 6 cm erreicht werden. Durch den Einsatz eines Scannersystems sind die Härtespurbreiten auch während des Härtungsprozesses variabel.

Die am Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS entwickelte kamerabasierte Laserleistungsregelung erfasst während des Härteprozesses die Oberflächentemperatur des bestrahlten Bauteilelements und ermöglicht so Härten mit hoher Genauigkeit. Dies ist trotz des inhomogenen Temperaturfeldes möglich, das durch Änderungen der Wärmeableitungsbedingungen entlang der Bauteilgeometrie und des Oberflächenzustandes durch Verschmutzung, Öl oder Rost entsteht.

Bei der externen Programmierung kann die zu bearbeitende Kontur am 3D-CAD-Modell gekennzeichnet und daraus die Bahnkurve des Laserstrahles sowie das Roboterprogramm errechnet werden. In einer virtuellen Härteanlage wird die berechnete Härtungsbahn vorab überprüft, um eventuelle Bahnkorrekturen vornehmen zu können.

Dr. Eckehard Hensel ist Geschäftsführer der Alotec GmbH in 01277 Dresden.

Eckehard Hensel | MM MaschinenMarkt
Weitere Informationen:
http://www.maschinenmarkt.vogel.de/themenkanaele/produktion/oberflaechentechnik/articles/226322/

Weitere Nachrichten aus der Kategorie Maschinenbau:

nachricht Das Auto lernt vorauszudenken
28.06.2017 | Technische Universität Wien

nachricht Stresstest über den Wolken
21.06.2017 | Hochschule Osnabrück

Alle Nachrichten aus der Kategorie: Maschinenbau >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Schnelles und umweltschonendes Laserstrukturieren von Werkzeugen zur Folienherstellung

Kosteneffizienz und hohe Produktivität ohne dabei die Umwelt zu belasten: Im EU-Projekt »PoLaRoll« entwickelt das Fraunhofer-Institut für Produktionstechnologie IPT aus Aachen gemeinsam mit dem Oberhausener Fraunhofer-Institut für Umwelt-, Sicherheit- und Energietechnik UMSICHT und sechs Industriepartnern ein Modul zur direkten Laser-Mikrostrukturierung in einem Rolle-zu-Rolle-Verfahren. Ziel ist es, mit Hilfe dieses Systems eine siebartige Metallfolie als Demonstrator zu fertigen, die zum Sonnenschutz von Glasfassaden verwendet wird: Durch ihre besondere Geometrie wird die Sonneneinstrahlung reduziert, woraus sich ein verminderter Energieaufwand für Kühlung und Belüftung ergibt.

Das Fraunhofer IPT ist im Projekt »PoLaRoll« für die Prozessentwicklung der Laserstrukturierung sowie für die Mess- und Systemtechnik zuständig. Von den...

Im Focus: Das Auto lernt vorauszudenken

Ein neues Christian Doppler Labor an der TU Wien beschäftigt sich mit der Regelung und Überwachung von Antriebssystemen – mit Unterstützung des Wissenschaftsministeriums und von AVL List.

Wer ein Auto fährt, trifft ständig Entscheidungen: Man gibt Gas, bremst und dreht am Lenkrad. Doch zusätzlich muss auch das Fahrzeug selbst ununterbrochen...

Im Focus: Vorbild Delfinhaut: Elastisches Material vermindert Reibungswiderstand bei Schiffen

Für eine elegante und ökonomische Fortbewegung im Wasser geben Delfine den Wissenschaftlern ein exzellentes Vorbild. Die flinken Säuger erzielen erstaunliche Schwimmleistungen, deren Ursachen einerseits in der Körperform und andererseits in den elastischen Eigenschaften ihrer Haut zu finden sind. Letzteres Phänomen ist bereits seit Mitte des vorigen Jahrhunderts bekannt, konnte aber bislang nicht erfolgreich auf technische Anwendungen übertragen werden. Experten des Fraunhofer IFAM und der HSVA GmbH haben nun gemeinsam mit zwei weiteren Forschungspartnern eine Oberflächenbeschichtung entwickelt, die ähnlich wie die Delfinhaut den Strömungswiderstand im Wasser messbar verringert.

Delfine haben eine glatte Haut mit einer darunter liegenden dicken, nachgiebigen Speckschicht. Diese speziellen Hauteigenschaften führen zu einer signifikanten...

Im Focus: Kaltes Wasser: Und es bewegt sich doch!

Bei minus 150 Grad Celsius flüssiges Wasser beobachten, das beherrschen Chemiker der Universität Innsbruck. Nun haben sie gemeinsam mit Forschern in Schweden und Deutschland experimentell nachgewiesen, dass zwei unterschiedliche Formen von Wasser existieren, die sich in Struktur und Dichte stark unterscheiden.

Die Wissenschaft sucht seit langem nach dem Grund, warum ausgerechnet Wasser das Molekül des Lebens ist. Mit ausgefeilten Techniken gelingt es Forschern am...

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Marine Pilze – hervorragende Quellen für neue marine Wirkstoffe?

28.06.2017 | Veranstaltungen

Willkommen an Bord!

28.06.2017 | Veranstaltungen

Internationale Fachkonferenz IEEE ICDCM - Lokale Gleichstromnetze bereichern die Energieversorgung

27.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

EUROSTARS-Projekt gestartet - mHealth-Lösung: time4you Forschungs- und Entwicklungspartner bei IMPACHS

28.06.2017 | Unternehmensmeldung

Proteine entdecken, zählen, katalogisieren

28.06.2017 | Biowissenschaften Chemie

Neue Scheinwerfer-Dimension: Volladaptive Lichtverteilung in Echtzeit

28.06.2017 | Automotive