Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bauteile selektiv mit dem Diodenlaser härten

19.08.2009
Beim Laserstrahlhärten mit Hochleistungsdiodenlasern wird der Laserstrahl durch ein optisches System gebündelt und kann gezielt die zukünftigen Verschleißzonen am Bauteil abfahren. Wegen des geringen Wärmemengeneintrags und der hohen Prozessgeschwindigkeit benötigt der Prozess keine zusätzlichen Medien zur Abschreckung.

Richtet man die Strahlung von Hochleistungsdiodenlasern direkt auf die Bauteiloberfläche, so erhitzt der Laserstrahl die dünne Oberflächenschicht des Bauteils kurzzeitig bis zur Austenitisierungstemperatur des Stahls (werkstoffabhängig, zwischen 900 und 1400 °C). Dabei ist die Schmelztemperatur eine kritische Größe, weil die Temperaturanstiegsgeschwindigkeit weit über 1000 °C pro Sekunde beträgt.

Laserhärten benötigt nur kurze Haltezeit des Laserstrahls auf dem Werkstoff

Im Verfahren wird der Laserstrahl mittels eines optischen Systems gebündelt und beispielsweise zukünftige Verschleißzonen werden am Bauteil damit abgefahren. Die wechselbaren Optikeinstellungen ermöglichen es, den Laserstrahl so einzustellen, dass die erzeugte Härtespur genau der Werkstückgeometrie angepasst werden kann. Weil der Härtungsprozess nur dort stattfindet, wo der Laserstrahl auf das Material trifft, ist eine exakte Begrenzung auf die Verschleißbereiche möglich.

Das Verfahren benötigt nur eine sehr kurze Haltezeit des Laserstrahls auf dem Werkstoff. Infolge des geringen Wärmemengeneintrags, der hohen Prozessgeschwindigkeit und der raschen Wärmeableitung in das Bauteilinnere kommt es zur Selbstabschreckung der behandelten Fläche, sobald der Wärmeeintrag beendet ist. Dies führt zum Einfrieren des Härtegefüges, im Ergebnis liegt die Härte um den Faktor zwei bis drei über der des unbehandelten Werkstoffes.

Die Einhärtetiefe hängt von vielen Faktoren ab, unter anderem von der Beschaffenheit des Bauteils und der damit verbundenen Selbstabschreckung. Die Laserstrahlhärtung ist für alle flamm- und induktivhärtbaren Werkstoffe einsetzbar. Sowohl Stahl als auch Stahlguss können mit diesem Verfahren gehärtet werden. Stahl kann mehr als 2 mm, Gusswerkstoffe können mehr als 1 mm tief eingehärtet werden. Die Voraussetzung für den Härtevorgang ist ein Mindestkohlenstoffgehalt im Gefüge von 0,25%. Zur Gewährleistung einer konstanten Randschichthärte muss der Werkstoff ein vergütetes Gefüge aufweisen. Beispiele für gut härtbare Werkstoffe sind C45, Cf53, 100Cr6, 42CrMo4, X155CrVMo12-1 oder GGG60.

Das Laserhärten bietet vielfältige Vorteile

Gerade für den Maschinenbau spielt die Zeitersparnis eine große Rolle, die durch die genau spezifizierte Härtfläche erreicht wird. Im Gegensatz zur üblichen Gesamtbehandlung des Bauteils bei der konventionellen Härtung kann das Laserhärten selektiv genau an der Stelle eingesetzt werden, an der die zusätzliche Härtung benötigt wird.

Durch die erhebliche Reduktion der Wärmemenge, die in das Bauteil eingebracht wird, entstehen weit weniger Komplikationen. Vor allem der sonst übliche thermische Verzug wird erheblich minimiert. Auch im Vergleich zur Induktionshärtung sind zahlreiche Vorteile zu nennen, wie etwa die höhere Genauigkeit der Härtespur auf der Bauteiloberfläche, die Einsatzmöglichkeit auch bei 3D-Freiformflächen oder die geringere elektrische Anschlussleistung der Gesamtanlage.

Die genannten Aspekte ermöglichen eine deutliche Kostensenkung. Weitere deutliche Kosten- und Zeit-ersparnis entsteht durch die Verringerung oder den kompletten Wegfall von Nacharbeit am Bauteil. Auch beim Energiebedarf entstehen durch die kurzen Erwärmungszeiten beim Laserhärten deutliche Kosteneinsparungseffekte. Die Prozesskontrolle durch die Laserleistungsregelung Lompoc-Pro und die kamerabasierte Temperaturerfassung liefern eine gleichbleibend hohe Produktqualität.

Laserhärten schon bei kleineren Losgrößen wirtschaftlich

Durch die hohe Flexibilität des Verfahrens ist die Wirtschaftlichkeit schon bei kleineren Losgrößen gegeben. Auch bei Umweltaspekten kann das Verfahren punkten. Der Prozess benötigt keine zusätzlichen Medien zur Abschreckung, damit entsteht keine Umweltbelastung durch Abwässer oder Öle.

Zusammenfassend kann für den Maschinenbau gesagt werden, dass das Laserstrahlhärten ein Verfahren zum gezielten Verbessern des Verschleißverhaltens von Bauteilen ist. Da Umformwerkzeuge und Pressformen einem erhöhten Verschleiß unterliegen, bietet es sich an, diese Bauteile mittels Laser randschichtzuhärten.

Alotec ist beim Laserhärten in zwei Feldern tätig: Zum einen werden im Haus individuelle Einzelhärtearbeiten im Kundenauftrag durchgeführt. Zum anderen bietet das Unternehmen Planung, Lieferung, Aufbau und Betreuung von Laserhärteanlagen an, die je nach Spezifikation konfiguriert und beim Kunden in Betrieb genommen werden.

Roboter, Diodenlaser, Laserleistungsregelung und eine Software als Hauptkomponenten

Hauptkomponenten der von Alotec hergestellten Laserhärteanlagen sind ein Roboter, ein Diodenlaser, eine temperaturabhängige Laserleistungsregelung und eine Software zur externen Programmierung der Anlage. Der Roboter in unterschiedlichen Größen bietet die nötige Flexibilität bei der Anpassung an Kundenanforderungen hinsichtlich des Arbeitsraumes und der gewünschten Einsatzposition des Laserstrahles am Bauteil. Die Skalierbarkeit des Roboters ermöglicht eine individuelle Anpassung der Laserhärteanlage an die Bauteilgröße bei einem vergleichsweise geringen Preis.

Die Laserquelle ist ein direktstrahlender oder fasergekoppelter Diodenlaser mit Ausgangsleistungen von 1 bis 10 kW. Die Vorteile im Vergleich zu anderen Laserquellen liegen im rechteckigen Strahlprofil mit homogener Energieverteilung, dem hohen Absorptionsgrad des Wellenlängenbereichs gegenüber Stahl sowie einem Wirkungsgrad von über 50%.

Scannersystems macht Härtespurbreiten auch während des Härtungsprozesses variabel

Mit einfach auszutauschenden Wechseloptiken können Härtespurbreiten von wenigen Millimetern bis zu 6 cm erreicht werden. Durch den Einsatz eines Scannersystems sind die Härtespurbreiten auch während des Härtungsprozesses variabel.

Die am Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS entwickelte kamerabasierte Laserleistungsregelung erfasst während des Härteprozesses die Oberflächentemperatur des bestrahlten Bauteilelements und ermöglicht so Härten mit hoher Genauigkeit. Dies ist trotz des inhomogenen Temperaturfeldes möglich, das durch Änderungen der Wärmeableitungsbedingungen entlang der Bauteilgeometrie und des Oberflächenzustandes durch Verschmutzung, Öl oder Rost entsteht.

Bei der externen Programmierung kann die zu bearbeitende Kontur am 3D-CAD-Modell gekennzeichnet und daraus die Bahnkurve des Laserstrahles sowie das Roboterprogramm errechnet werden. In einer virtuellen Härteanlage wird die berechnete Härtungsbahn vorab überprüft, um eventuelle Bahnkorrekturen vornehmen zu können.

Dr. Eckehard Hensel ist Geschäftsführer der Alotec GmbH in 01277 Dresden.

Eckehard Hensel | MM MaschinenMarkt
Weitere Informationen:
http://www.maschinenmarkt.vogel.de/themenkanaele/produktion/oberflaechentechnik/articles/226322/

Weitere Nachrichten aus der Kategorie Maschinenbau:

nachricht IPH entwickelt Prüfstand für angetriebene Tragrollen
29.11.2016 | IPH - Institut für Integrierte Produktion Hannover gGmbH

nachricht LZH optimiert laserbasierte CFK-Nachbearbeitung für die Luftfahrtindustrie
24.11.2016 | Laser Zentrum Hannover e.V.

Alle Nachrichten aus der Kategorie: Maschinenbau >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Wie sich Zellen gegen Salmonellen verteidigen

05.12.2016 | Biowissenschaften Chemie

Fraunhofer WKI koordiniert vom BMEL geförderten Forschungsverbund zu Zusatznutzen von Dämmstoffen aus nachwachsenden Rohstoffen

05.12.2016 | Förderungen Preise

Höhere Energieeffizienz durch Brennhilfsmittel aus Porenkeramik

05.12.2016 | Energie und Elektrotechnik