Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bauteile selektiv mit dem Diodenlaser härten

19.08.2009
Beim Laserstrahlhärten mit Hochleistungsdiodenlasern wird der Laserstrahl durch ein optisches System gebündelt und kann gezielt die zukünftigen Verschleißzonen am Bauteil abfahren. Wegen des geringen Wärmemengeneintrags und der hohen Prozessgeschwindigkeit benötigt der Prozess keine zusätzlichen Medien zur Abschreckung.

Richtet man die Strahlung von Hochleistungsdiodenlasern direkt auf die Bauteiloberfläche, so erhitzt der Laserstrahl die dünne Oberflächenschicht des Bauteils kurzzeitig bis zur Austenitisierungstemperatur des Stahls (werkstoffabhängig, zwischen 900 und 1400 °C). Dabei ist die Schmelztemperatur eine kritische Größe, weil die Temperaturanstiegsgeschwindigkeit weit über 1000 °C pro Sekunde beträgt.

Laserhärten benötigt nur kurze Haltezeit des Laserstrahls auf dem Werkstoff

Im Verfahren wird der Laserstrahl mittels eines optischen Systems gebündelt und beispielsweise zukünftige Verschleißzonen werden am Bauteil damit abgefahren. Die wechselbaren Optikeinstellungen ermöglichen es, den Laserstrahl so einzustellen, dass die erzeugte Härtespur genau der Werkstückgeometrie angepasst werden kann. Weil der Härtungsprozess nur dort stattfindet, wo der Laserstrahl auf das Material trifft, ist eine exakte Begrenzung auf die Verschleißbereiche möglich.

Das Verfahren benötigt nur eine sehr kurze Haltezeit des Laserstrahls auf dem Werkstoff. Infolge des geringen Wärmemengeneintrags, der hohen Prozessgeschwindigkeit und der raschen Wärmeableitung in das Bauteilinnere kommt es zur Selbstabschreckung der behandelten Fläche, sobald der Wärmeeintrag beendet ist. Dies führt zum Einfrieren des Härtegefüges, im Ergebnis liegt die Härte um den Faktor zwei bis drei über der des unbehandelten Werkstoffes.

Die Einhärtetiefe hängt von vielen Faktoren ab, unter anderem von der Beschaffenheit des Bauteils und der damit verbundenen Selbstabschreckung. Die Laserstrahlhärtung ist für alle flamm- und induktivhärtbaren Werkstoffe einsetzbar. Sowohl Stahl als auch Stahlguss können mit diesem Verfahren gehärtet werden. Stahl kann mehr als 2 mm, Gusswerkstoffe können mehr als 1 mm tief eingehärtet werden. Die Voraussetzung für den Härtevorgang ist ein Mindestkohlenstoffgehalt im Gefüge von 0,25%. Zur Gewährleistung einer konstanten Randschichthärte muss der Werkstoff ein vergütetes Gefüge aufweisen. Beispiele für gut härtbare Werkstoffe sind C45, Cf53, 100Cr6, 42CrMo4, X155CrVMo12-1 oder GGG60.

Das Laserhärten bietet vielfältige Vorteile

Gerade für den Maschinenbau spielt die Zeitersparnis eine große Rolle, die durch die genau spezifizierte Härtfläche erreicht wird. Im Gegensatz zur üblichen Gesamtbehandlung des Bauteils bei der konventionellen Härtung kann das Laserhärten selektiv genau an der Stelle eingesetzt werden, an der die zusätzliche Härtung benötigt wird.

Durch die erhebliche Reduktion der Wärmemenge, die in das Bauteil eingebracht wird, entstehen weit weniger Komplikationen. Vor allem der sonst übliche thermische Verzug wird erheblich minimiert. Auch im Vergleich zur Induktionshärtung sind zahlreiche Vorteile zu nennen, wie etwa die höhere Genauigkeit der Härtespur auf der Bauteiloberfläche, die Einsatzmöglichkeit auch bei 3D-Freiformflächen oder die geringere elektrische Anschlussleistung der Gesamtanlage.

Die genannten Aspekte ermöglichen eine deutliche Kostensenkung. Weitere deutliche Kosten- und Zeit-ersparnis entsteht durch die Verringerung oder den kompletten Wegfall von Nacharbeit am Bauteil. Auch beim Energiebedarf entstehen durch die kurzen Erwärmungszeiten beim Laserhärten deutliche Kosteneinsparungseffekte. Die Prozesskontrolle durch die Laserleistungsregelung Lompoc-Pro und die kamerabasierte Temperaturerfassung liefern eine gleichbleibend hohe Produktqualität.

Laserhärten schon bei kleineren Losgrößen wirtschaftlich

Durch die hohe Flexibilität des Verfahrens ist die Wirtschaftlichkeit schon bei kleineren Losgrößen gegeben. Auch bei Umweltaspekten kann das Verfahren punkten. Der Prozess benötigt keine zusätzlichen Medien zur Abschreckung, damit entsteht keine Umweltbelastung durch Abwässer oder Öle.

Zusammenfassend kann für den Maschinenbau gesagt werden, dass das Laserstrahlhärten ein Verfahren zum gezielten Verbessern des Verschleißverhaltens von Bauteilen ist. Da Umformwerkzeuge und Pressformen einem erhöhten Verschleiß unterliegen, bietet es sich an, diese Bauteile mittels Laser randschichtzuhärten.

Alotec ist beim Laserhärten in zwei Feldern tätig: Zum einen werden im Haus individuelle Einzelhärtearbeiten im Kundenauftrag durchgeführt. Zum anderen bietet das Unternehmen Planung, Lieferung, Aufbau und Betreuung von Laserhärteanlagen an, die je nach Spezifikation konfiguriert und beim Kunden in Betrieb genommen werden.

Roboter, Diodenlaser, Laserleistungsregelung und eine Software als Hauptkomponenten

Hauptkomponenten der von Alotec hergestellten Laserhärteanlagen sind ein Roboter, ein Diodenlaser, eine temperaturabhängige Laserleistungsregelung und eine Software zur externen Programmierung der Anlage. Der Roboter in unterschiedlichen Größen bietet die nötige Flexibilität bei der Anpassung an Kundenanforderungen hinsichtlich des Arbeitsraumes und der gewünschten Einsatzposition des Laserstrahles am Bauteil. Die Skalierbarkeit des Roboters ermöglicht eine individuelle Anpassung der Laserhärteanlage an die Bauteilgröße bei einem vergleichsweise geringen Preis.

Die Laserquelle ist ein direktstrahlender oder fasergekoppelter Diodenlaser mit Ausgangsleistungen von 1 bis 10 kW. Die Vorteile im Vergleich zu anderen Laserquellen liegen im rechteckigen Strahlprofil mit homogener Energieverteilung, dem hohen Absorptionsgrad des Wellenlängenbereichs gegenüber Stahl sowie einem Wirkungsgrad von über 50%.

Scannersystems macht Härtespurbreiten auch während des Härtungsprozesses variabel

Mit einfach auszutauschenden Wechseloptiken können Härtespurbreiten von wenigen Millimetern bis zu 6 cm erreicht werden. Durch den Einsatz eines Scannersystems sind die Härtespurbreiten auch während des Härtungsprozesses variabel.

Die am Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS entwickelte kamerabasierte Laserleistungsregelung erfasst während des Härteprozesses die Oberflächentemperatur des bestrahlten Bauteilelements und ermöglicht so Härten mit hoher Genauigkeit. Dies ist trotz des inhomogenen Temperaturfeldes möglich, das durch Änderungen der Wärmeableitungsbedingungen entlang der Bauteilgeometrie und des Oberflächenzustandes durch Verschmutzung, Öl oder Rost entsteht.

Bei der externen Programmierung kann die zu bearbeitende Kontur am 3D-CAD-Modell gekennzeichnet und daraus die Bahnkurve des Laserstrahles sowie das Roboterprogramm errechnet werden. In einer virtuellen Härteanlage wird die berechnete Härtungsbahn vorab überprüft, um eventuelle Bahnkorrekturen vornehmen zu können.

Dr. Eckehard Hensel ist Geschäftsführer der Alotec GmbH in 01277 Dresden.

Eckehard Hensel | MM MaschinenMarkt
Weitere Informationen:
http://www.maschinenmarkt.vogel.de/themenkanaele/produktion/oberflaechentechnik/articles/226322/

Weitere Nachrichten aus der Kategorie Maschinenbau:

nachricht rollFEED® Turning auf EMAG Maschinen: Tempomacher für die Drehbearbeitung
17.10.2017 | EMAG GmbH & Co. KG

nachricht Schuler-MSC2000-Dual-Servopresse am Fraunhofer IPT für Werkzeugtests und Entwicklungsprojekte
17.10.2017 | Fraunhofer-Institut für Produktionstechnologie IPT

Alle Nachrichten aus der Kategorie: Maschinenbau >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochfeldmagnet am BER II: Einblick in eine versteckte Ordnung

Seit dreißig Jahren gibt eine bestimmte Uranverbindung der Forschung Rätsel auf. Obwohl die Kristallstruktur einfach ist, versteht niemand, was beim Abkühlen unter eine bestimmte Temperatur genau passiert. Offenbar entsteht eine so genannte „versteckte Ordnung“, deren Natur völlig unklar ist. Nun haben Physiker erstmals diese versteckte Ordnung näher charakterisiert und auf mikroskopischer Skala untersucht. Dazu nutzten sie den Hochfeldmagneten am HZB, der Neutronenexperimente unter extrem hohen magnetischen Feldern ermöglicht.

Kristalle aus den Elementen Uran, Ruthenium, Rhodium und Silizium haben eine geometrisch einfache Struktur und sollten keine Geheimnisse mehr bergen. Doch das...

Im Focus: Schmetterlingsflügel inspiriert Photovoltaik: Absorption lässt sich um bis zu 200 Prozent steigern

Sonnenlicht, das von Solarzellen reflektiert wird, geht als ungenutzte Energie verloren. Die Flügel des Schmetterlings „Gewöhnliche Rose“ (Pachliopta aristolochiae) zeichnen sich durch Nanostrukturen aus, kleinste Löcher, die Licht über ein breites Spektrum deutlich besser absorbieren als glatte Oberflächen. Forschern am Karlsruher Institut für Technologie (KIT) ist es nun gelungen, diese Nanostrukturen auf Solarzellen zu übertragen und deren Licht-Absorptionsrate so um bis zu 200 Prozent zu steigern. Ihre Ergebnisse veröffentlichten die Wissenschaftler nun im Fachmagazin Science Advances. DOI: 10.1126/sciadv.1700232

„Der von uns untersuchte Schmetterling hat eine augenscheinliche Besonderheit: Er ist extrem dunkelschwarz. Das liegt daran, dass er für eine optimale...

Im Focus: Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

Im Blut zirkulierende Biomoleküle und Zellen sind Träger diagnostischer Information, deren Analyse hochwirksame, individuelle Therapien ermöglichen. Um diese Information zu erschließen, haben Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein Mikrochip-basiertes Diagnosegerät entwickelt: Der »AnaLighter« analysiert und sortiert klinisch relevante Biomoleküle und Zellen in einer Blutprobe mit Licht. Dadurch können Frühdiagnosen beispielsweise von Tumor- sowie Herz-Kreislauf-Erkrankungen gestellt und patientenindividuelle Therapien eingeleitet werden. Experten des Fraunhofer ILT stellen diese Technologie vom 13.–16. November auf der COMPAMED 2017 in Düsseldorf vor.

Der »AnaLighter« ist ein kompaktes Diagnosegerät zum Sortieren von Zellen und Biomolekülen. Sein technologischer Kern basiert auf einem optisch schaltbaren...

Im Focus: Neue Möglichkeiten für die Immuntherapie beim Lungenkrebs entdeckt

Eine gemeinsame Studie der Universität Bern und des Inselspitals Bern zeigt, dass spezielle Bindegewebszellen, die in normalen Blutgefässen die Wände abdichten, bei Lungenkrebs nicht mehr richtig funktionieren. Zusätzlich unterdrücken sie die immunologische Bekämpfung des Tumors. Die Resultate legen nahe, dass diese Zellen ein neues Ziel für die Immuntherapie gegen Lungenkarzinome sein könnten.

Lungenkarzinome sind die häufigste Krebsform weltweit. Jährlich werden 1.8 Millionen Neudiagnosen gestellt; und 2016 starben 1.6 Millionen Menschen an der...

Im Focus: Sicheres Bezahlen ohne Datenspur

Ob als Smartphone-App für die Fahrkarte im Nahverkehr, als Geldwertkarten für das Schwimmbad oder in Form einer Bonuskarte für den Supermarkt: Für viele gehören „elektronische Geldbörsen“ längst zum Alltag. Doch vielen Kunden ist nicht klar, dass sie mit der Nutzung dieser Angebote weitestgehend auf ihre Privatsphäre verzichten. Am Karlsruher Institut für Technologie (KIT) entsteht ein sicheres und anonymes System, das gleichzeitig Alltagstauglichkeit verspricht. Es wird nun auf der Konferenz ACM CCS 2017 in den USA vorgestellt.

Es ist vor allem das fehlende Problembewusstsein, das den Informatiker Andy Rupp von der Arbeitsgruppe „Kryptographie und Sicherheit“ am KIT immer wieder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Das Immunsystem in Extremsituationen

19.10.2017 | Veranstaltungen

Die jungen forschungsstarken Unis Europas tagen in Ulm - YERUN Tagung in Ulm

19.10.2017 | Veranstaltungen

Bauphysiktagung der TU Kaiserslautern befasst sich mit energieeffizienten Gebäuden

19.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Forscher finden Hinweise auf verknotete Chromosomen im Erbgut

20.10.2017 | Biowissenschaften Chemie

Saugmaschinen machen Waschwässer von Binnenschiffen sauberer

20.10.2017 | Ökologie Umwelt- Naturschutz

Strukturbiologieforschung in Berlin: DFG bewilligt Mittel für neue Hochleistungsmikroskope

20.10.2017 | Förderungen Preise