Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Automatisiertes Biegezentrum für kleine und komplizierte Biegeteile

10.12.2008
Kleine und komplexe Bauteile aus Blech, werden meist auf Gesenkbiegepressen oder in Umformpressen hergestellt. Ein Hersteller von Schwenkbiegemaschinen und Biegezentren hat mit einem Mini-Bend-Center jetzt erstmals ein automatisiertes Biegesystem vorgestellt, das sich speziell für die Bearbeitung kleiner und komplexer Biegeteile eignet.

Blech-Kleinteile lassen sich jetzt auch wirtschaftlich auf einem Mini-Bend-Center (Aufmacherbild) herstellen. Dabei handelt es sich um ein automatisiertes Biegesystem für kleine und komplexe Biegeteile, die bisher meist den Gesenkbiegepressen oder auf Pressenbasis automatisierten Robotersystemen zugeordnet wurden. Obwohl Schwenkbiegesysteme für unterschiedliche Einsatzfälle in Sachen Geschwindigkeit, Flexibilität und Blechdicke ausgelegt sind und sich daher stark unterscheiden können, biegen sie dennoch alle auf die gleiche Weise. Ein Manipulator oder Anschlagsystem positioniert das Blech auf der Biegelinie. Ober- und Unterwange spannen das Blech. Die Biegewange schwenkt nach oben oder unten und biegt den gewünschten Winkel. Da der gespannte Blechschenkel in der Horizontalen bleibt, während der andere Biegeschenkel die Auflageebene verlässt, lässt sich dieses Verfahren sehr gut automatisieren.

Das vom schwäbischen Hersteller RAS entwickelte Mini-Bend-Center stellt unter Beweis, dass sich dieses Verfahren nicht nur für das bisher bekannte Haupteinsatzgebiet der Schwenkbiegetechnik – den großflächigen Blechen – eignet, sondern auch im Bereich kleiner, komplexer Biegeteile hervorragende Dienste leistet. RAS hat viel Erfahrung beim Biegen äußerer Verkleidungsbleche, die häufig auf Biegezentren gefertigt werden. Mit dem Mini-Bend-Center ist das Unternehmen in der Lage etwa für Automaten, im Gehäusebau, bei Waagenherstellern, im Bereich der Weißware oder im Küchenbereich auch die kleinen Bleche aus dem Innenleben der Geräte automatisch zu biegen. Damit kann das Mini-Bend-Center bis zu 600 × 600 mm große Platinen verarbeiten und ist für bis 3 mm dicke Stahlbleche ausgelegt.

Alle Achsen servomotorisch angetrieben und digital geregelt

Alle Achsen der Maschine sind servomotorisch und mit digitalen Reglern angetrieben. Dies garantiert automatische Abläufe mit höchster Konstanz und Wiederholtreue. Automatisch heißt, dass die Bleche automatisch zugeführt, ausgerichtet und vermessen werden. Es heißt auch, dass die Maschine den Werkzeugaufbau automatisch bewerkstelligt. Ein Manipulator führt das Blech automatisch von Station zu Station und dreht es auf Position. Da die Maschine die genaue Position des Blechs im Manipulator einmal ermittelt und danach das Blech nicht mehr loslässt, kommt das Mini-Bend-Center im Biegezyklus ohne Anschläge aus. Dieses Verfahren führt zu schnellen Biegeabläufe, einem hohen Ausstoß, großen Produktivitätssprüngen und niedrigen Stückkosten. Die Biegezelle biegt das Werkstück automatisch nach oben sowie unten und schließlich wird das fertige Biegeteil automatisch abgeführt.

Eine herausfordernde Aufgabe – fürwahr. Speziell wenn man bedenkt, dass RAS mit diesem Technologiesprung die Tür für eine neue Dimension in der Anwendung der Schwenkbiegetechnik aufgestoßen hat. Ein automatisches Biegesystem für Kleinteile zu entwickeln heißt nicht, eine kleine Maschine zu entwerfen. Bereits in der Grundausführung zeigt sich das Mini-Bend-Center mit stattlichen Abmessungen von 7 × 4 Metern.

Seine Finessen gibt das Mini-Bend-Center jedoch erst auf den zweiten Blick preis. So haben die RAS-Entwickler nicht nur die großen Stückzahlen vor Augen, sondern zielen auch auf mittlere und kleine Stückzahlen und Losgrößen ab. Dies kann jedoch nur funktionieren, wenn hinter der Maschine ein leistungsfähiges Programmiersystem steckt, mit dem auch komplexe Biegeteile in weniger als 30 min programmierbar sind. Hintergrund für diesen optimistischen Ansatz ist ein eigens entwickeltes und auf einer 3D-Plattform basierendes CAM-System. Damit ermittelt der Programmierer aus dem 3D-Modell die Abwicklung des Blechteils.

Er bestimmt die Ablegeposition auf einer Werkstückträgerpalette, legt die Referenz und Messpunkte am Teil fest und generiert den Biegeablauf. Auf dem Programmiersystem erscheint 3D simuliert die Biege-Abfolge – Schritt für Schritt. Ist das Biegeprogramm am Rechner erzeugt, hat das Mini-Bend-Center alle Informationen, um daraus den maschinenspezifischen Ablauf zu generieren. Und schon kann es losgehen. Der Maschinenbediener bereitet die Werkstück-Trägerpalette vor. Das Programm gibt ihm an, auf welchen Positionen im Koordinatenraster des Werkstück-Trägerpalette er die Zentrierstifte einstecken soll. Ist diese Arbeit getan, legt er die Laserzuschnitte ein. Dies erfolgt sinnvollerweise direkt an der Lasermaschine, so dass bereits die Trägerpalette als Baustein im Logistikprozess Blechteilefertigung zu sehen ist.

Palettenzuführung manuell oder über Palettenbahnhof

Die Palette kann manuell oder in Ausbaustufen auch über einen Palettenbahnhof der Maschine zugeführt werden. Der Verschiebetisch in der Aufnahmestation zentriert die Palette automatisch, so dass auf ein besonders akkurates Zuführen verzichtet werden kann. Ein Saugersystem greift sich die oberste Platine und bringt sie zum Übergabetisch, wo ein Manipulator den Zuschnitt übernimmt.

Im ersten Schritt führt der Manipulator das Blech an einer optischen Messstation vorbei. Hier verwendet das Mini-Bend-Center die vom RAS-Biegezentrum bekannte Technik des optischen Vermessens der Platine. Nachdem drei Punkte der Platine vermessen sind, kennt das System die exakte Aufnahmeposition der Platine und korrigiert auf dem Weg zur ersten Biegestation alle Abweichungen zur theoretischen Greifposition des Manipulators. Mit dem Manipulator setzt RAS ein weiteres bewährtes Element der Biegezentren ein.

Anders als bei anderen automatisierten Systemen hält der Manipulator den Zuschnitt nicht durch Sauger – die bei Kleinteilen schnell an ihre Grenzen stoßen – und auch nicht mit Greiferzangen von außen – die ein häufiges Umgreifen und damit verbunden einen Verlust an Produktivität und Genauigkeit mit sich bringen. RAS setzt vielmehr auf einen Manipulator, der den Zuschnitt mittels eines oberen und unteren Spannfußes im Teil spannt. Ein Umgreifen kommt nur in seltenen Fällen vor. Der Manipulator muss auch keine Schwenkbewegung ausführen, da der horizontal gegriffene Blechschenkel beim Biegeablauf immer in der Horizontalen bleibt.

Blech wird ohne Auflagetisch durch die Maschine bewegt

Auf das Biegeresultat bezogen heißt das: hohe Präzision, schnelle Biegeabläufe und kurze Zykluszeiten. Sollte das Umgreifen doch einmal notwendig werden, kann der Manipulator seinen oberen und unteren Spannfuß unabhängig voneinander drehen und somit zeitsparend im Biegeteil stehen bleiben. Anders als bei Biegezentren für Großteile wird das Blech ohne Auflagetisch durch die Maschine bewegt. Damit hat der Manipulator alle Freiheitsgrade.

Außer dem angesprochenen Drehen von Biegeseite zu Biegeseite, kann er das Blech zur Biegelinie bewegen, kann seitlich der Maschine entlang verfahren und kann das Blech nach oben ausheben. All diese Bewegungen werden von linear verfahrenden Achsen ausgeführt. Das Mini-Bend-Center kennt keine Gelenkachsen, wie sie etwa bei Robotern üblich sind. Daher kann der Manipulator jede Position mit höchster Genauigkeit anfahren – und RAS konnte ein weiteres Merkmal des Biegezentrums auf das Mini-Bend-Center übertragen: das schnelle Biegen ohne Positionier-Anschläge.

Die Werkzeuge der Ober- und Unterwange spannen das Werkstück, sobald es auf der Biegelinie liegt. Beide Werkzeuge sind gleich geformt und eröffnen für die Biegeschenkel einen vertikalen Freiraum nach oben und unten von 127 mm. Eine obere oder untere Biegewange fährt das gespannte Blech an und formt es mit einstellbarem Biegeradius um. Das Werkzeug rollt dabei in einer 3D-Bewegung auf der Blech-Oberfläche ab, so dass das Biegeverfahren ein kratzfreies Umformen zulässt und die Werkzeuge keinem Verschleiß unterliegen.

Werkzeugwechsler bestückt Biegestationen automatisch

Der Werkstückanteil, der über den Spannpunkt hinaus in die Maschine ragt, kann 480 mm lang sein. Sind alle Biegungen am Werkstück ausgeführt – was entlang der Maschine an mehreren Werkzeugstationen erfolgen kann – bringt der Manipulator das fertige Biegeteil zur Entladestelle. Dort kann es entweder über eine Schüttgutweiche abgeworfen werden, über ein Transportband ausgeschleust oder durch einen Entladeroboter abgelegt werden. Bevor das Biegen beginnt, bestückt ein Werkzeugwechsler die einzelnen Biegestationen automatisch.

Vom CAM-System erhält die Maschinensteuerung die benötigten Werkzeuglängen pro Station. Auch die Werkzeugform wird über diese Schnittstelle übergeben. Die Maschinensteuerung berechnet aus diesen Informationen die notwendigen Werkzeugsegmente für jede Station. Noch entscheidender ist allerdings, dass die Steuerung auch die Wechselfolge automatisch berechnet ehe der Werkzeugwechsler seine Arbeit aufnimmt. Dies geht sogar so weit, dass der Werkzeugwechsler in bestimmten Situationen erst andere Werkzeuge aus dem Weg räumen muss, ehe er an die eigentlich zu wechselnden Werkzeuge gelangen kann.

Willy Stahl ist Geschäftsführer der RAS Reinhardt Maschinenbau GmbH in Sindelfingen.

Willy Stahl | MM MaschinenMarkt
Weitere Informationen:
http://www.maschinenmarkt.vogel.de/themenkanaele/produktion/umformtechnik/articles/156998/

Weitere Nachrichten aus der Kategorie Maschinenbau:

nachricht Leichtbau serientauglich machen
24.04.2017 | Laser Zentrum Hannover e.V.

nachricht Laserstrukturierung verbessert Haftung auf Metall und schont die Umwelt
24.04.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

Alle Nachrichten aus der Kategorie: Maschinenbau >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Im Focus: Leichtbau serientauglich machen

Immer mehr Autobauer setzen auf Karosserieteile aus kohlenstofffaserverstärktem Kunststoff (CFK). Dennoch müssen Fertigungs- und Reparaturkosten weiter gesenkt werden, um CFK kostengünstig nutzbar zu machen. Das Laser Zentrum Hannover e.V. (LZH) hat daher zusammen mit der Volkswagen AG und fünf weiteren Partnern im Projekt HolQueSt 3D Laserprozesse zum automatisierten Besäumen, Bohren und Reparieren von dreidimensionalen Bauteilen entwickelt.

Automatisiert ablaufende Bearbeitungsprozesse sind die Grundlage, um CFK-Bauteile endgültig in die Serienproduktion zu bringen. Ausgerichtet an einem...

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

123. Internistenkongress: Traumata, Sprachbarrieren, Infektionen und Bürokratie – Herausforderungen

27.04.2017 | Veranstaltungen

Jenaer Akustik-Tag: Belastende Geräusche minimieren - für den Schutz des Gehörs

27.04.2017 | Veranstaltungen

Ballungsräume Europas

26.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Kaltwasserkorallen: Versauerung schadet, Wärme hilft

27.04.2017 | Biowissenschaften Chemie

IAB-Arbeitsmarktbarometer: Arbeitsmarkt bleibt im Aufwind

27.04.2017 | Wirtschaft Finanzen

Wurmmittel für Weidetiere können die Keimung von Pflanzensamen beeinflussen

27.04.2017 | Agrar- Forstwissenschaften