Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Automatisierte Inspektion

01.12.2009
Robotereinsatz erhöhnt den Durchsatz in der Solarzellenproduktion

Obwohl die Nachfrage nach Solarprodukten rasant steigt, ist die Herstellung von Strom mit Solarzellen noch immer teurer als die Stromproduktion mit fossilen Brennstoffen. Allerdings rückt die sehnsüchtig erwartetet Grid Parity nicht zuletzt dank immer wirtschaftlicherer Produktionsmethoden allmählich näher. Die Photovoltaik-Hersteller stehen unter enormem Kosten- und Innovationsdruck. Nur wer die neuesten Technologien umsetzt, kann am Markt bestehen.

Wie in vielen anderen Bereichen auch, ist der Trend zur Automatisierung in der Photovoltaikindustrie nicht mehr aufzuhalten. "Die Automatisierungstechnik ermöglicht es den Herstellern, die Erträge zu steigern und Kosten zu senken. Außerdem produzieren Solarhersteller in größeren Betriebsstätten, so dass eine Automatisierung heute unumgänglich ist", sagt Joachim Melis, Geschäftsführer von Adept Technology.

Das Unternehmen arbeitet mit verschiedenen Solarzellen-Herstellern zusammen. Das Zusammenspiel eines Adept-Quattro 650H-Roboters mit der Bildverarbeitung Adeptsight ermöglicht es den Herstellern, verschiedene Schritte im Herstellungsprozess zu automatisieren. Im Folgenden werden anhand verschiedener Produktionsschritte die Möglichkeiten der Automatisierung aufgezeigt.

Das automatisierte Inspektionssystem setzt im vorletzten Schritt des Herstellungsprozesses von Solarzellen ein. Die Siliziumscheiben haben bereits mehrere Dünnschicht-Beschichtungsverfahren durchlaufen, damit deren Wirkungsgrad beim Umwandeln von Sonnenlicht in elektrische Energie möglichst hoch ist. Beim Drucken wird ein Raster von Elektroden mit leitfähiger Tinte aufgebracht. In dieser Phase zahlt es sich aus, das Raster zu untersuchen und die Wafer, die Druckfehler aufweisen, zu recyceln und das Raster neu aufzubringen. Gleichzeitig können Risse, Verunreinigungen und andere Mängel im Wafer ermittelt werden. Dazu wird das Robtotersystem zwischen der Siebdruckstation und dem Brennofen für den Elektrodendruck installiert.

Die Wafer können sich während der Inspektion ungehindert auf dem Transportband bewegen. Die verwendete hochauflösende Kamera ist an den Bildverarbeitungscontroller Smart-Vision EX von Adept angeschlossen, einem PC-basierten Bildverarbeitungscontroller, auf dem die Adept-Bildverarbeitungssoftware Adeptsight ausgeführt wird. Diese enthält alle notwendigen Algorithmen für die Inspektionsanwendungen und führt gleichzeitig den Roboter auf der Suche nach einzelnen Wafern.

Die zweifachen Anforderungen - automatisierte Inspektion und Roboterführung - erfordern zwei verschiedene, auf das gleiche Bild angewendete Analysealgorithmen. Wenn sich der Wafer mit dem Transportband bewegt, wird ein Bild mit der Kamera aufgenommen und über die Gig-E-Verbindung in den Bildverarbeitungscontroller hochgeladen. Das Schwellenwertverfahren und die Konturenerkennung heben die Kontur des Wafers sowie die Siebdruckelektroden hervor. Die Inspektionsaufgaben des Robotersystems können in drei Bereiche unterteilt werden: Druckinspektion, Inspektion auf Abplatzungen und Rastererkennung.

Die Druckinspektion gewährleistet, dass die Elektrodenkanten glatt sind, das richtige Raster bilden und einwandfrei mit den Waferkanten ausgerichtet sind. Die Inspektion auf Abplatzungen stellt sicher, dass die Waferkontur nicht von der korrekten Größe und Form abweicht. Und die Algorithmen zur Rastererkennung suchen nach allem, was ungewöhnlich ist - beispielsweise Risse oder unterbrochene Tintenlinien. Lineare Messalgorithmen überprüfen die einwandfreie Positionierung des Tintenrasters, das vorhanden sein sollte.

Der Roboter muss bei der Inspektion mit der Kamera genau erkennen, wie die Wafer auf dem Band liegen. Das integrierte Bildverarbeitungsprogramm Adeptsight ermittelt die exakte Ausrichtung des Wafers. Der Adept-Smartcontroller setzt diese Informationen via Fire-Wire-Schnittstelle in ein gedrehtes Koordinatensystem um, das mit den Kanten des Wafers ausgerichtet ist.

Der Controller des Bildverarbeitungsprogramms klassifiziert die Zellen und sortiert die ausgemusterten Wafer in verschiedene Behälter. Es gibt Wafer, die gereinigt und wiederverwertet werden können und Wafer, die verschiedene, nicht korrigierbare Mängel aufweisen, wie abgeplatzte Kanten und Ränder sowie Risse. Die Wafer-Handling-Station, die nach der Inspektion folgt, verwendet einen Adept Quattro-Roboter und stimmt sich mit dem Bildverarbeitungssystem ab, um sowohl die Inspektion als auch das Handling der Wafer zu automatisieren.
Der Adept Quattro s650H ist ein Roboter mit neuartiger Kinematik, die speziell für High-Speed-Verpackung und Materialhandling entwickelt wurde. Er ist weltweit der einzige Roboter mit Vier-Arm-Design und erreicht so eine extrem hohe Geschwindigkeit und Beschleunigung über den gesamten Arbeitsbereich.

Der rotierende Freiheitsgrad wird durch Schultergelenke in der Basiseinheit ermöglicht, durch die die vier Arme des Roboters relativ zueinander bewegt werden können.

Als weitere Abweichung von der herkömmlichen Praxis bei der Materialhandhabung durch Roboter verwendet die Konstruktion von Adept anstelle der üblichen Sauggreif-Technologie eine sanftere Methode zum Aufnehmen und Bewegen von Wafern - basierend auf dem Bernoulli-Prinzip. Bei Sauggreifern wird ein Vakuum erzeugt, um den Wafer an einen Elastomer-Saugnapf anzusaugen. Die Reibung zwischen den Saugnapflippen und dem Wafer erzeugt dann die Kraft, die zum Bewegen des Wafers erforderlich ist.

Das Bernoulli-Prinzip zeigt hingegen, wie man den positiven Luftdruck nutzen kann, um einen Wafer eng an eine flache Platte anzusaugen, ohne dass dieser dabei aber die Platte berührt. Die Strömungsgeschwindigkeit der Luft, die durch eine enge Spalte zwischen den Greifplatten und dem Wafer strömen muss, muss sich erhöhen, damit die Luft entweichen kann. Außerhalb des Spalts verringert sich die Strömungsgeschwindigkeit der Luft bis auf null. Demnach muss der Luftdruck in dem Spalt viel niedriger sein als der Umgebungsdruck. Sauggreifer verursachen eine punktuelle Belastung um die Ansaugöffnung herum, wohingegen die Bernoulli-Greifer die Belastung auf die ganze Greifplatte verteilen. Dieses Phänomen verringert wesentlich den maximalen Belastungsgrad im Wafer und folglich das Auftreten nachfolgender Brüche.

Die Vorteile einer automatisierten Inspektion sind vielfältig. "In der Vergangenheit verließen sich Hersteller bei der Qualitätssicherung auf die manuelle Inspektion ihrer Mitarbeiter. In verschiedenen Arbeitsschritten waren es mehrere Personen, die die Wafer überprüft haben", so Uwe Siekmann, Applikationsingenieur bei Adept Technology. Während eine manuelle Inspektion nicht immer einheitliche Ergebnisse liefert, ermöglicht eine automatisierte Inspektion mit Roboter und Bildverarbeitung eine bessere Qualität bei einer höheren Geschwindigkeit und gleichzeitiger Reduzierung der Material- und Fixkosten.

Rüdiger Winter | handling
Weitere Informationen:
http://www.handling.de/xist4c/web/Automatisierte-Inspektion_id_882__dId_472900_.htm

Weitere Nachrichten aus der Kategorie Maschinenbau:

nachricht Stresstest über den Wolken
21.06.2017 | Hochschule Osnabrück

nachricht 3D-Druck im Mittelstand etablieren
20.06.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

Alle Nachrichten aus der Kategorie: Maschinenbau >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften