Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

400-W-Femtosekundenlaser für die hochgenaue Materialbearbeitung

19.08.2009
Er ist unvorstellbar kurz und doch wirkungsvoll: der Puls eines Femtosekundenlasers. Mit einer mittleren Leistung von über 400 W soll der Ultrakurzpulslaser für das Abtragen sehr dünner Schichten, das Bohren oder das Strukturieren eingesetzt werden.

Femtosekundenlaser (fs-Laser) sind der Schlüssel zur Ultrapräzisionsbearbeitung in unterschiedlichen Anwendungsfeldern. Ob in der Medizintechnik, der Elektronik, der Luft- und Raumfahrt oder in der Solartechnik, mit fs-Lasern lassen sich sehr genau dünne Schichten abtragen, faserverstärkte Kunststoffe bohren oder Oberflächen von Keramik-Bauteilen strukturieren.

Als Hürde für die Verbreitung der Femtosekundenlaser erweisen sich die Kosten, die aus den komplexen optischen Modulen resultieren, und die zurzeit bei kommerziellen Systemen auf unter 100 W begrenzte mittlere Leistung.

Mit der Entwicklung eines 400-W-fs-Lasers auf Basis der Inno-Slab-Technik leitet das Fraunhofer-Institut für Lasertechnik ILT einen Paradigmenwechsel in der Herstellung kompakter fs-Laser ein. Mit einer mittleren Leistung von über 400 W hält er den Weltrekord hinsichtlich mittlerer Leistung eines Lasers mit Pulsdauern kleiner als eine Pikosekunde.

Keine direkte Wechselwirkung von Licht und abströmender Materie

Femtosekundenlaser haben seit ihren Anfängen vor 35 Jahren in der Wissenschaft eine stürmische Entwicklung erlebt. Die Wechselwirkung von fs-Laserstrahlung mit Materie ist dadurch gekennzeichnet, dass die Pulsdauer kleiner als die meisten Wechselwirkungszeiten zwischen Atomen beziehungsweise Atomen und Elektronen ist. So treten bei der Materialbearbeitung Wärmeleitung, Schmelzen, Verdampfen oder Plasmabildung praktisch erst nach der Einwirkung der Laserstrahlung auf. Im Gegensatz zu längeren Nanosekunden-Pulsen oder Dauerstrich-(cw-)Lasern tritt keine direkte Wechselwirkung von Licht und abströmender Materie auf, was einen besonders genauen Materialabtrag ermöglicht. Mit fs-Lasern sind Bearbeitungsergebnisse erzielbar, die durch kein anderes Verfahren erreicht werden.

Femtosekundenlaser haben noch keine große Verbreitung in der Produktion

Eine wesentliche Limitierung für den breiten Einsatz heutiger fs-Laser ist ihre mittlere Ausgangsleistung. Während cw-Faser- oder Scheibenlaser heute mehrere Kilowatt mittlerer Leistung bei beugungsbegrenzter Strahlqualität erreichen, liegt die Ausgangsleistung von Femtosekundenlasern typischerweise bei einzelnen Watt. 50 W zählen bei kommerziellen Lasern schon zum High-End-Bereich.

Aufgrund ihrer komplexen Bauweise liegt der Preis solcher Systeme bei einigen hunderttausend Euro. Hoher Preis und leistungsbegrenzte Prozessgeschwindigkeit schränken derzeit das Einsatzpotenzial von fs-Lasern ein. Deshalb haben Femtosekundenlaser in der Produktion bisher keine breite Anwendung gefunden.

Auf der Messe Laser World of Photonics 2009 im vergangenen Juni in München stellte das Fraunhofer ILT erstmals das derzeit leistungsstärkste Ultrakurzpulslaser-Modul aus. Dieses wurde zum Teil im Verbundprojekt Lasertron mit Fördermitteln des Bundesministerium für Bildung und Forschung (BMBF) aus dem Femtonik-Programm entwickelt. Mit einer mittleren Leistung von über 400 W hält es den Weltrekord hinsichtlich mittlerer Leistung eines Lasers mit Pulsdauern kleiner einer Pikosekunde.

Inno-Slab-Technik ermöglicht thermisch robusten und kompakten Aufbau

Dies wurde möglich durch die Neuinterpretation der sogenannten Inno-Slab-Technik, die seit über 10 Jahren am ILT entwickelt wird. Diese Technik bildet schon die Grundlage für zahlreiche Nano- und Pikosekunden-Lasersysteme im industriellen Einsatz. Der sehr einfache Aufbau des Single-Pass-Verstärkers mit vier Spiegeln und einem Laserkristall ermöglicht einen opto-mechanisch und thermisch außergewöhnlich robusten und kompakten Aufbau.

Darüber hinaus ist eine Reduktion und Anpassung der auftretenden Intensitäten konzeptinhärent und bietet so die Möglichkeit, Pulsenergien unterhalb einem Millijoule – wie sie insbesondere für die Mikromaterialbearbeitung relevant sind — ohne komplexe „Chirped Pulse Amplification“ zu erreichen. Dies ist ein weiterer Durchbruch für die Vereinfachung von fs-Lasersystemen und der damit verbundenen Kosten und so eine wesentliche Voraussetzung für den großflächigen Einsatz im industriellen Umfeld.

Optische Effizienz von 50% bei voller Leistung

Der Laser ist dadurch gekennzeichnet, dass Oszillatoren mit 1 bis 2 W Ausgangsleistung mit einer einzigen Verstärkerstufe auf bis zu 400 W Leistung verstärkt werden können. Bei voller Leistung wird eine Strahlqualität M2

Weitere Highlights sind Pulsdauern unter 700 fs und spektrale Bandbreiten unter 2 nm. Einerseits sind die Pulse damit deutlich kürzer als bei heutigen ps-Lasern und ermöglichen bessere Ergebnisse, zum Beispiel in der Mikromaterialbearbeitung. Andererseits erlauben Bandbreite und Wellenlänge noch uneingeschränkt die Verwendung der gleichen Optiken wie bei typischen ps- und ns-Lasern.

Spezielle Aufbauten zur zeitlichen Komprimierung (Kompressoren), wie bei Ultrakurzpulslasern häufig notwendig, sind überflüssig. Damit entfallen sämtliche Probleme, wie die Pulsfront-/Phasenfront-Neigung, die durch diese Aufbauten hervorgerufen werden können.

Grenzen des Ultrakurzpulslasers derzeit noch nicht erreicht

Aufgrund des bandbreitebegrenzten Spektrums und der hohen Pulsspitzenleistung eignet sich die Laserstrahlung sehr gut für nichtlineare Frequenzkonversion. Frequenzverdoppelung, Kompression der Pulsdauer oder Erzeugung hoher Harmonische sind laufende Arbeiten. Erhöhung der Pulsenergie in den Multi-Millijoule-Bereich bei mehreren 100 W mittlerer Leistung durch zusätzliche CPA-Technik ermöglicht in Zukunft auch den Einsatz im wissenschaftlichen Bereich.

Die praktischen Grenzen des Ultrakurzpulslasers sind nach allen theoretischen und experimentellen Erkenntnissen derzeit noch nicht erreicht. Daher befasst sich das Fraunhofer ILT bereits mit der Skalierung des Femtosekundenlasers zu Leistungen größer 1000 W.

Dr. Peter Rußbüldt leitet die Femtosekundenlaser-Entwicklung am Fraunhofer-Institut für Lasertechnik ILT in 52074 Aachen. Dr. Torsten Mans entwickelt dort Femtosekundenlaser.

Peter Rußbüldt und Torsten Mans | MM MaschinenMarkt
Weitere Informationen:
http://www.maschinenmarkt.vogel.de/themenkanaele/produktion/trenntechnik/articles/226319/

Weitere Nachrichten aus der Kategorie Maschinenbau:

nachricht Flexible Fertigung von Elektromotoren für Fahrzeuge
06.09.2017 | Karlsruher Institut für Technologie

nachricht Gewicht von Robomotion-Greifer um 60 Prozent reduziert
31.07.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

Alle Nachrichten aus der Kategorie: Maschinenbau >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie