Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

400-W-Femtosekundenlaser für die hochgenaue Materialbearbeitung

19.08.2009
Er ist unvorstellbar kurz und doch wirkungsvoll: der Puls eines Femtosekundenlasers. Mit einer mittleren Leistung von über 400 W soll der Ultrakurzpulslaser für das Abtragen sehr dünner Schichten, das Bohren oder das Strukturieren eingesetzt werden.

Femtosekundenlaser (fs-Laser) sind der Schlüssel zur Ultrapräzisionsbearbeitung in unterschiedlichen Anwendungsfeldern. Ob in der Medizintechnik, der Elektronik, der Luft- und Raumfahrt oder in der Solartechnik, mit fs-Lasern lassen sich sehr genau dünne Schichten abtragen, faserverstärkte Kunststoffe bohren oder Oberflächen von Keramik-Bauteilen strukturieren.

Als Hürde für die Verbreitung der Femtosekundenlaser erweisen sich die Kosten, die aus den komplexen optischen Modulen resultieren, und die zurzeit bei kommerziellen Systemen auf unter 100 W begrenzte mittlere Leistung.

Mit der Entwicklung eines 400-W-fs-Lasers auf Basis der Inno-Slab-Technik leitet das Fraunhofer-Institut für Lasertechnik ILT einen Paradigmenwechsel in der Herstellung kompakter fs-Laser ein. Mit einer mittleren Leistung von über 400 W hält er den Weltrekord hinsichtlich mittlerer Leistung eines Lasers mit Pulsdauern kleiner als eine Pikosekunde.

Keine direkte Wechselwirkung von Licht und abströmender Materie

Femtosekundenlaser haben seit ihren Anfängen vor 35 Jahren in der Wissenschaft eine stürmische Entwicklung erlebt. Die Wechselwirkung von fs-Laserstrahlung mit Materie ist dadurch gekennzeichnet, dass die Pulsdauer kleiner als die meisten Wechselwirkungszeiten zwischen Atomen beziehungsweise Atomen und Elektronen ist. So treten bei der Materialbearbeitung Wärmeleitung, Schmelzen, Verdampfen oder Plasmabildung praktisch erst nach der Einwirkung der Laserstrahlung auf. Im Gegensatz zu längeren Nanosekunden-Pulsen oder Dauerstrich-(cw-)Lasern tritt keine direkte Wechselwirkung von Licht und abströmender Materie auf, was einen besonders genauen Materialabtrag ermöglicht. Mit fs-Lasern sind Bearbeitungsergebnisse erzielbar, die durch kein anderes Verfahren erreicht werden.

Femtosekundenlaser haben noch keine große Verbreitung in der Produktion

Eine wesentliche Limitierung für den breiten Einsatz heutiger fs-Laser ist ihre mittlere Ausgangsleistung. Während cw-Faser- oder Scheibenlaser heute mehrere Kilowatt mittlerer Leistung bei beugungsbegrenzter Strahlqualität erreichen, liegt die Ausgangsleistung von Femtosekundenlasern typischerweise bei einzelnen Watt. 50 W zählen bei kommerziellen Lasern schon zum High-End-Bereich.

Aufgrund ihrer komplexen Bauweise liegt der Preis solcher Systeme bei einigen hunderttausend Euro. Hoher Preis und leistungsbegrenzte Prozessgeschwindigkeit schränken derzeit das Einsatzpotenzial von fs-Lasern ein. Deshalb haben Femtosekundenlaser in der Produktion bisher keine breite Anwendung gefunden.

Auf der Messe Laser World of Photonics 2009 im vergangenen Juni in München stellte das Fraunhofer ILT erstmals das derzeit leistungsstärkste Ultrakurzpulslaser-Modul aus. Dieses wurde zum Teil im Verbundprojekt Lasertron mit Fördermitteln des Bundesministerium für Bildung und Forschung (BMBF) aus dem Femtonik-Programm entwickelt. Mit einer mittleren Leistung von über 400 W hält es den Weltrekord hinsichtlich mittlerer Leistung eines Lasers mit Pulsdauern kleiner einer Pikosekunde.

Inno-Slab-Technik ermöglicht thermisch robusten und kompakten Aufbau

Dies wurde möglich durch die Neuinterpretation der sogenannten Inno-Slab-Technik, die seit über 10 Jahren am ILT entwickelt wird. Diese Technik bildet schon die Grundlage für zahlreiche Nano- und Pikosekunden-Lasersysteme im industriellen Einsatz. Der sehr einfache Aufbau des Single-Pass-Verstärkers mit vier Spiegeln und einem Laserkristall ermöglicht einen opto-mechanisch und thermisch außergewöhnlich robusten und kompakten Aufbau.

Darüber hinaus ist eine Reduktion und Anpassung der auftretenden Intensitäten konzeptinhärent und bietet so die Möglichkeit, Pulsenergien unterhalb einem Millijoule – wie sie insbesondere für die Mikromaterialbearbeitung relevant sind — ohne komplexe „Chirped Pulse Amplification“ zu erreichen. Dies ist ein weiterer Durchbruch für die Vereinfachung von fs-Lasersystemen und der damit verbundenen Kosten und so eine wesentliche Voraussetzung für den großflächigen Einsatz im industriellen Umfeld.

Optische Effizienz von 50% bei voller Leistung

Der Laser ist dadurch gekennzeichnet, dass Oszillatoren mit 1 bis 2 W Ausgangsleistung mit einer einzigen Verstärkerstufe auf bis zu 400 W Leistung verstärkt werden können. Bei voller Leistung wird eine Strahlqualität M2

Weitere Highlights sind Pulsdauern unter 700 fs und spektrale Bandbreiten unter 2 nm. Einerseits sind die Pulse damit deutlich kürzer als bei heutigen ps-Lasern und ermöglichen bessere Ergebnisse, zum Beispiel in der Mikromaterialbearbeitung. Andererseits erlauben Bandbreite und Wellenlänge noch uneingeschränkt die Verwendung der gleichen Optiken wie bei typischen ps- und ns-Lasern.

Spezielle Aufbauten zur zeitlichen Komprimierung (Kompressoren), wie bei Ultrakurzpulslasern häufig notwendig, sind überflüssig. Damit entfallen sämtliche Probleme, wie die Pulsfront-/Phasenfront-Neigung, die durch diese Aufbauten hervorgerufen werden können.

Grenzen des Ultrakurzpulslasers derzeit noch nicht erreicht

Aufgrund des bandbreitebegrenzten Spektrums und der hohen Pulsspitzenleistung eignet sich die Laserstrahlung sehr gut für nichtlineare Frequenzkonversion. Frequenzverdoppelung, Kompression der Pulsdauer oder Erzeugung hoher Harmonische sind laufende Arbeiten. Erhöhung der Pulsenergie in den Multi-Millijoule-Bereich bei mehreren 100 W mittlerer Leistung durch zusätzliche CPA-Technik ermöglicht in Zukunft auch den Einsatz im wissenschaftlichen Bereich.

Die praktischen Grenzen des Ultrakurzpulslasers sind nach allen theoretischen und experimentellen Erkenntnissen derzeit noch nicht erreicht. Daher befasst sich das Fraunhofer ILT bereits mit der Skalierung des Femtosekundenlasers zu Leistungen größer 1000 W.

Dr. Peter Rußbüldt leitet die Femtosekundenlaser-Entwicklung am Fraunhofer-Institut für Lasertechnik ILT in 52074 Aachen. Dr. Torsten Mans entwickelt dort Femtosekundenlaser.

Peter Rußbüldt und Torsten Mans | MM MaschinenMarkt
Weitere Informationen:
http://www.maschinenmarkt.vogel.de/themenkanaele/produktion/trenntechnik/articles/226319/

Weitere Nachrichten aus der Kategorie Maschinenbau:

nachricht Flüssiger Wasserstoff im freien Fall
05.12.2016 | Zentrum für angewandte Raumfahrttechnologie und Mikrogravitation (ZARM)

nachricht IPH entwickelt Prüfstand für angetriebene Tragrollen
29.11.2016 | IPH - Institut für Integrierte Produktion Hannover gGmbH

Alle Nachrichten aus der Kategorie: Maschinenbau >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochgenaue Versuchsstände für dynamisch belastete Komponenten – Workshop zeigt Potenzial auf

09.12.2016 | Seminare Workshops

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie