Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Paliocolor®-Flüssigkristalle der BASF verbessern Blickwinkel und Kontrast bei Flachbildschirmen deutlich

20.10.2004


Sie sind unser Fenster zur Welt. Schnittstelle zwischen Mensch und Technik, das Tor zum Internet: Fernseher und Monitore zaubern Hollywood in unsere Wohnzimmer, das World Wide Web auf unseren Schreibtisch, sie machen Information für unsere Augen überhaupt erst sichtbar. Ohne Bildschirme sind Kommunikation und Entertainment heute nicht mehr vorstellbar.



In die Röhre möchte dabei allerdings niemand mehr gucken. Riesige Fernseher und Monitore mit Kathodenstrahltechnik verschwinden allmählich aus Büros und Wohnungen. Schlanke, leichte Flachbildschirme nehmen den Platz der alten Giganten ein – ohne dabei auch nur annähernd so viel Platz zu benötigen wie die sperrigen Vorgänger. Elegant und unauffällig machen die neuen Displays mit TFT-Technologie (Thin Film Transistor) damit auch noch als Wohnaccessoire Spaß. Doch insbesondere bei immer größeren Fernsehern hat diese Entwicklung auch ihre eigenen, sehr hohen Ansprüche an den technischen Fortschritt: Trotz einer stetig wachsenden Bilddiagonalen sollen die flachen Bildschirme mit tollen Farben glänzen und aus jedem Blickwinkel ein gestochen scharfes Bild liefern – ohne dabei die Stromrechnung in die Höhe zu treiben. Mit Paliocolor®-Flüssigkristallen bietet die BASF nun ein Material an, das diese Herausforderungen alle gleichermaßen meistert.



„Unsere neuartigen Paliocolor®-Flüssigkristalle machen mit ihren außergewöhnlichen optischen Eigenschaften hochwertige TV-Flatscreens überhaupt erst möglich“, erklärt Dr. Bernd Ziegler, Manager New Business Development Performance Chemicals bei der BASF. „Paliocolor® überwindet die Einschränkungen älterer Flüssigkristall-Bildschirme und ermöglicht gleichzeitig eine kostengünstige Herstellung.“

Das Geheimnis der neuen BASF-Materialien: Im Gegensatz zu anderen hoch entwickelten Flüssigkristallen (LCs) am Markt, die sich ausschließlich für den Einsatz in der LC-Zelle selbst eignen, lässt sich Paliocolor® mikrometerdünn ausstreichen und unter ultraviolettem Licht zu einer festen Folie polymerisieren. Die so hergestellten optischen Folien können hervorragend als extrem dünne Korrekturfilme vor und hinter den LC-Zellen in die Displays eingebaut werden. Das Besondere: Die BASF bietet ihren Kunden zwei Versionen der neuen Flüssigkristalle an. Paliocolor®LC 242 bildet das stabile Fundament der neuen Polymerfilme, während Paliocolor®LC 756 aufgrund seiner zuckerähnlichen Struktur schon jetzt als die weltweit beste Substanz mit optischer Aktivität gilt. Bisher galten Zuckerverbindungen für Display-Anwendungen interessanterweise als vollkommen ungeeignet. Doch genau das hat Professor Volkmar Vill von der Universität Hamburg mit seiner Arbeitsgruppe und dem Kooperationspartner BASF widerlegt. Die entdeckten Strukturen sind derartig gut, preiswert und stabil, „dass es heute kaum noch eine Alternative dazu gibt“. Und für den Chemiker und Physiker Vill hat das auch eine gewisse Logik: „Zuckerstrukturen waren immer Informationsträger und ‘Display-Material’. Bedenken Sie nur, dass der Zucker Cellulose Hauptbestandteil von Papier ist.“ Die neuen BASF-Flüssigkristalle sind in unterschiedlichen Verhältnissen mischbar, die Zusammensetzung der Folien kann ganz fein auf den Bedarf abgestimmt werden.

Dank einer ausgefeilten Beschichtungstechnik, der Fachmann spricht von Coating, lassen sich optische Filme aus Paliocolor®-Flüssigkristallen aber auch noch in beliebiger Größe herstellen. Bisher waren große Flächen technisch nur sehr aufwendig zugänglich, weil andere optische Materialien sich einzig durch Verstrecken in das gewünschte Format bringen ließen. Beim Verstrecken entsteht eine ungleichmäßige Verteilung der Moleküle und damit viel Abfall, die Breite der hergestellten Filme ist schlicht begrenzt. Das Coating war deshalb auch für die BASF die Methode der Wahl – die Ludwigshafener haben sie eigens für Paliocolor®-Filme weiterentwickelt, patentiert und bieten zum neuen Material gleich ein abgestimmtes Herstellungsverfahren. Es spart Kosten und ermöglicht gleichzeitig jede Bilddiagonale.

Die Kombination von Korrektureigenschaften und Verarbeitungsmöglichkeiten macht Paliocolor®-Flüssigkristalle deshalb schon jetzt zum Herzstück neuester Fernsehdisplays. Seit 2002 statten namhafte Hersteller ihre neu entwickelten Geräte mit Paliocolor®-Folien aus und können Fernsehfans bereits das große Plus fürs Auge bieten: Die neuen TV-Geräte sind nicht nur flach, leicht und groß in der Optik, sie zeigen auch aus stark seitlicher Perspektive ein kontrastreiches und scharfes Bild.

Die Perspektive

Mit einem Anteil von mehr als 80 Prozent führt die LCD-Technologie den Displaymarkt schon jetzt unangefochten an – und daran wird sich in den kommenden Jahren auch nichts ändern. Das Interesse an der schlanken Bildschirmtechnologie wächst weiterhin um jährlich etwa ein Viertel, für das Jahr 2007 ist mit einem Umsatz von insgesamt 70 Milliarden US-Dollar zu rechnen. Displays für Notebooks und PC-Monitore werden sich dabei weiterhin gut verkaufen, während der Wunsch nach großen und flachen Fernsehern gerade erst richtig erwacht ist und sich entsprechend rasant entwickelt. Paliocolor®-Flüssigkristalle bringen eine entscheidende Verbesserung für diese Technologie, die den Displaymarkt auch in den kommenden Jahren klar dominieren wird.

Der Infokasten

Flüssigkristalle oder Liquid Crystals (LCs) sind in bestimmten Temperaturbereichen beides: fest und flüssig. Wie in einem festen Gitter orientieren sich die Moleküle in eine bestimmte Richtung, bleiben aber mobil wie in einer Flüssigkeit. Sie brechen und filtern einfallendes Licht wie feste Kristallgitter. In elektrischen Feldern können sich LCs gemäß der angelegten Spannung drehen und verändern dabei auch ihre optischen Eigenschaften – ein Prinzip, das in Flüssigkristall-Bildschirmen die tragende Rolle spielt.

Polarisation von Licht ist für die LC-Displaytechnik ebenfalls sehr wichtig. Normales Lampenlicht besteht aus einer Vielzahl von Lichtwellen, die verschieden lang sind und auf unterschiedlichen Ebenen schwingen – man sagt, das Licht ist polychromatisch und nicht polarisiert. Für LC-Bildschirme ist aber polarisiertes Licht erforderlich, das mit derselben Wellenlänge auf einer Ebene schwingt. Dieses Licht kann mit Hilfe von Polarisationsfiltern aus dem Wellenwirrwarr des Lampenlichts herausgesiebt werden. Aus Paliocolor® lassen sich besonders dünne optische Folien polymerisieren, die unter anderem auch Polarisationseigenschaften haben.

Transistoren steuern die Stärke von elektrischem Strom. In neueren Flachbildschirmen stecken Millionen solcher kleinen Schalter, die an- und ausgeknipst werden können. Jedem Transistor ist ein bestimmter Raum in der Flüssigkristallzelle zugeordnet. Das dabei erzeugte elektrische Feld orientiert die Kristalle der LC-Zelle neu und bestimmt, ob und wie das einfallende polarisierte Licht von den Molekülen gedreht wird und ob der zweite Polarisationsfilter das Licht wieder hinauslässt. Die modernste Umsetzung des Transistorprinzips sind dünne Transistorfilme (Thin Film Transistors, TFTs), die weitgehend lichtdurchlässig sind und jeden Bildpunkt einzeln ansteuern.

LCDs oder Liquid Crystal Displays stellen die Anwendung der oben genannten Prinzipien dar. Ihr Aufbau gleicht einem dünnen Sandwich, das vor eine Lampe gestellt wird und dessen äußere Schichten aus Polarisationsfiltern bestehen. Dazwischen befindet sich die LC-Zelle, eingerahmt von Glasplatten mit Farbfiltern und Transistoren.

| BASF News
Weitere Informationen:
http://www.basf.com

Weitere Nachrichten aus der Kategorie Kommunikation Medien:

nachricht Wissenschaftler entschlüsseln das „perfekte Selfie“
26.06.2017 | Otto-Friedrich-Universität Bamberg

nachricht Wenn die Bilder lügen - KI-System entlarvt Fake News im Internet
20.04.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

Alle Nachrichten aus der Kategorie: Kommunikation Medien >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: Das Proton präzise gewogen

Wie schwer ist ein Proton? Auf dem Weg zur möglichst exakten Kenntnis dieser fundamentalen Konstanten ist jetzt Wissenschaftlern aus Deutschland und Japan ein wichtiger Schritt gelungen. Mit Präzisionsmessungen an einem einzelnen Proton konnten sie nicht nur die Genauigkeit um einen Faktor drei verbessern, sondern auch den bisherigen Wert korrigieren.

Die Masse eines einzelnen Protons noch genauer zu bestimmen – das machen die Physiker um Klaus Blaum und Sven Sturm vom Max-Planck-Institut für Kernphysik in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Operatortheorie im Fokus

20.07.2017 | Veranstaltungen

Technologietag der Fraunhofer-Allianz Big Data: Know-how für die Industrie 4.0

18.07.2017 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - September 2017

17.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

1,4 Millionen Euro für Forschungsprojekte im Industrie 4.0-Kontext

20.07.2017 | Förderungen Preise

Von photonischen Nanoantennen zu besseren Spielekonsolen

20.07.2017 | Physik Astronomie

Bildgebung von entstehendem Narbengewebe

20.07.2017 | Biowissenschaften Chemie