Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Paliocolor®-Flüssigkristalle der BASF verbessern Blickwinkel und Kontrast bei Flachbildschirmen deutlich

20.10.2004


Sie sind unser Fenster zur Welt. Schnittstelle zwischen Mensch und Technik, das Tor zum Internet: Fernseher und Monitore zaubern Hollywood in unsere Wohnzimmer, das World Wide Web auf unseren Schreibtisch, sie machen Information für unsere Augen überhaupt erst sichtbar. Ohne Bildschirme sind Kommunikation und Entertainment heute nicht mehr vorstellbar.



In die Röhre möchte dabei allerdings niemand mehr gucken. Riesige Fernseher und Monitore mit Kathodenstrahltechnik verschwinden allmählich aus Büros und Wohnungen. Schlanke, leichte Flachbildschirme nehmen den Platz der alten Giganten ein – ohne dabei auch nur annähernd so viel Platz zu benötigen wie die sperrigen Vorgänger. Elegant und unauffällig machen die neuen Displays mit TFT-Technologie (Thin Film Transistor) damit auch noch als Wohnaccessoire Spaß. Doch insbesondere bei immer größeren Fernsehern hat diese Entwicklung auch ihre eigenen, sehr hohen Ansprüche an den technischen Fortschritt: Trotz einer stetig wachsenden Bilddiagonalen sollen die flachen Bildschirme mit tollen Farben glänzen und aus jedem Blickwinkel ein gestochen scharfes Bild liefern – ohne dabei die Stromrechnung in die Höhe zu treiben. Mit Paliocolor®-Flüssigkristallen bietet die BASF nun ein Material an, das diese Herausforderungen alle gleichermaßen meistert.



„Unsere neuartigen Paliocolor®-Flüssigkristalle machen mit ihren außergewöhnlichen optischen Eigenschaften hochwertige TV-Flatscreens überhaupt erst möglich“, erklärt Dr. Bernd Ziegler, Manager New Business Development Performance Chemicals bei der BASF. „Paliocolor® überwindet die Einschränkungen älterer Flüssigkristall-Bildschirme und ermöglicht gleichzeitig eine kostengünstige Herstellung.“

Das Geheimnis der neuen BASF-Materialien: Im Gegensatz zu anderen hoch entwickelten Flüssigkristallen (LCs) am Markt, die sich ausschließlich für den Einsatz in der LC-Zelle selbst eignen, lässt sich Paliocolor® mikrometerdünn ausstreichen und unter ultraviolettem Licht zu einer festen Folie polymerisieren. Die so hergestellten optischen Folien können hervorragend als extrem dünne Korrekturfilme vor und hinter den LC-Zellen in die Displays eingebaut werden. Das Besondere: Die BASF bietet ihren Kunden zwei Versionen der neuen Flüssigkristalle an. Paliocolor®LC 242 bildet das stabile Fundament der neuen Polymerfilme, während Paliocolor®LC 756 aufgrund seiner zuckerähnlichen Struktur schon jetzt als die weltweit beste Substanz mit optischer Aktivität gilt. Bisher galten Zuckerverbindungen für Display-Anwendungen interessanterweise als vollkommen ungeeignet. Doch genau das hat Professor Volkmar Vill von der Universität Hamburg mit seiner Arbeitsgruppe und dem Kooperationspartner BASF widerlegt. Die entdeckten Strukturen sind derartig gut, preiswert und stabil, „dass es heute kaum noch eine Alternative dazu gibt“. Und für den Chemiker und Physiker Vill hat das auch eine gewisse Logik: „Zuckerstrukturen waren immer Informationsträger und ‘Display-Material’. Bedenken Sie nur, dass der Zucker Cellulose Hauptbestandteil von Papier ist.“ Die neuen BASF-Flüssigkristalle sind in unterschiedlichen Verhältnissen mischbar, die Zusammensetzung der Folien kann ganz fein auf den Bedarf abgestimmt werden.

Dank einer ausgefeilten Beschichtungstechnik, der Fachmann spricht von Coating, lassen sich optische Filme aus Paliocolor®-Flüssigkristallen aber auch noch in beliebiger Größe herstellen. Bisher waren große Flächen technisch nur sehr aufwendig zugänglich, weil andere optische Materialien sich einzig durch Verstrecken in das gewünschte Format bringen ließen. Beim Verstrecken entsteht eine ungleichmäßige Verteilung der Moleküle und damit viel Abfall, die Breite der hergestellten Filme ist schlicht begrenzt. Das Coating war deshalb auch für die BASF die Methode der Wahl – die Ludwigshafener haben sie eigens für Paliocolor®-Filme weiterentwickelt, patentiert und bieten zum neuen Material gleich ein abgestimmtes Herstellungsverfahren. Es spart Kosten und ermöglicht gleichzeitig jede Bilddiagonale.

Die Kombination von Korrektureigenschaften und Verarbeitungsmöglichkeiten macht Paliocolor®-Flüssigkristalle deshalb schon jetzt zum Herzstück neuester Fernsehdisplays. Seit 2002 statten namhafte Hersteller ihre neu entwickelten Geräte mit Paliocolor®-Folien aus und können Fernsehfans bereits das große Plus fürs Auge bieten: Die neuen TV-Geräte sind nicht nur flach, leicht und groß in der Optik, sie zeigen auch aus stark seitlicher Perspektive ein kontrastreiches und scharfes Bild.

Die Perspektive

Mit einem Anteil von mehr als 80 Prozent führt die LCD-Technologie den Displaymarkt schon jetzt unangefochten an – und daran wird sich in den kommenden Jahren auch nichts ändern. Das Interesse an der schlanken Bildschirmtechnologie wächst weiterhin um jährlich etwa ein Viertel, für das Jahr 2007 ist mit einem Umsatz von insgesamt 70 Milliarden US-Dollar zu rechnen. Displays für Notebooks und PC-Monitore werden sich dabei weiterhin gut verkaufen, während der Wunsch nach großen und flachen Fernsehern gerade erst richtig erwacht ist und sich entsprechend rasant entwickelt. Paliocolor®-Flüssigkristalle bringen eine entscheidende Verbesserung für diese Technologie, die den Displaymarkt auch in den kommenden Jahren klar dominieren wird.

Der Infokasten

Flüssigkristalle oder Liquid Crystals (LCs) sind in bestimmten Temperaturbereichen beides: fest und flüssig. Wie in einem festen Gitter orientieren sich die Moleküle in eine bestimmte Richtung, bleiben aber mobil wie in einer Flüssigkeit. Sie brechen und filtern einfallendes Licht wie feste Kristallgitter. In elektrischen Feldern können sich LCs gemäß der angelegten Spannung drehen und verändern dabei auch ihre optischen Eigenschaften – ein Prinzip, das in Flüssigkristall-Bildschirmen die tragende Rolle spielt.

Polarisation von Licht ist für die LC-Displaytechnik ebenfalls sehr wichtig. Normales Lampenlicht besteht aus einer Vielzahl von Lichtwellen, die verschieden lang sind und auf unterschiedlichen Ebenen schwingen – man sagt, das Licht ist polychromatisch und nicht polarisiert. Für LC-Bildschirme ist aber polarisiertes Licht erforderlich, das mit derselben Wellenlänge auf einer Ebene schwingt. Dieses Licht kann mit Hilfe von Polarisationsfiltern aus dem Wellenwirrwarr des Lampenlichts herausgesiebt werden. Aus Paliocolor® lassen sich besonders dünne optische Folien polymerisieren, die unter anderem auch Polarisationseigenschaften haben.

Transistoren steuern die Stärke von elektrischem Strom. In neueren Flachbildschirmen stecken Millionen solcher kleinen Schalter, die an- und ausgeknipst werden können. Jedem Transistor ist ein bestimmter Raum in der Flüssigkristallzelle zugeordnet. Das dabei erzeugte elektrische Feld orientiert die Kristalle der LC-Zelle neu und bestimmt, ob und wie das einfallende polarisierte Licht von den Molekülen gedreht wird und ob der zweite Polarisationsfilter das Licht wieder hinauslässt. Die modernste Umsetzung des Transistorprinzips sind dünne Transistorfilme (Thin Film Transistors, TFTs), die weitgehend lichtdurchlässig sind und jeden Bildpunkt einzeln ansteuern.

LCDs oder Liquid Crystal Displays stellen die Anwendung der oben genannten Prinzipien dar. Ihr Aufbau gleicht einem dünnen Sandwich, das vor eine Lampe gestellt wird und dessen äußere Schichten aus Polarisationsfiltern bestehen. Dazwischen befindet sich die LC-Zelle, eingerahmt von Glasplatten mit Farbfiltern und Transistoren.

| BASF News
Weitere Informationen:
http://www.basf.com

Weitere Nachrichten aus der Kategorie Kommunikation Medien:

nachricht Virtuell und 360°: die Zukunft bewegter Bilder
04.10.2016 | Fachhochschule St. Pölten

nachricht Content-Marketing: In der Praxis angekommen - Studie zu Content-Marketing-Strategien
15.07.2016 | PFH Private Hochschule Göttingen

Alle Nachrichten aus der Kategorie: Kommunikation Medien >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie