Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Zelluläres Kräftemessen

29.09.2016

Biologische Zellen können sich ausdehnen und zusammenziehen und mit Nachbarzellen wechselwirken. Wo dabei welche Kräfte wirken, können ETH-Forscher dank einer verbesserten Mikroskopiemethode einfacher und genauer bestimmen. Die Technik wird beispielsweise in der Krebsforschung verwendet.

Ein interdisziplinäres Team von Wissenschaftlern der ETH Zürich hat eine neue Mikroskopietechnik entwickelt. Damit können die Forschenden sehr detailliert Kräfte messen, welche biologische Zellen aufbringen, wenn diese wachsen, ihre Form ändern oder sich fortbewegen. Bei der neuen Methode handelt es sich um eine Weiterentwicklung der Traktionskraftmikroskopie (engl. traction force microscopy, TFM). Damit können Forscher diese Zellkräfte einfacher und höher aufgelöst messen als mit bisherigen Verfahren.


Mikroskopiebild eines roten Fluoreszenzgitters und einer Zelle, deren Wechselwirkung mit der Unterlage grün sichtbar ist (links oben). Rechts und unten: dasselbe Bild in anderen Farbe.

ETH Zürich / Martin Bergert

Elastische Unterlage

«Die heute gängigsten Ausführungen der Traktionskraftmikroskopie nutzen eine elastisch verformbare Unterlage und darin eingelassene mikroskopisch kleine fluoreszierende Referenzpunkte», erklärt Dimos Poulikakos, Professor für Thermodynamik und Leiter des Forschungsprojekts. Auf diesen Unterlagen können Wissenschaftler im Laborexperiment Zellen wachsen lassen. Wenn sich diese zum Beispiel nach der Gabe eines Botenstoffs verformen, wird die Unterlage ebenfalls verformt, sodass sich die Referenzpunkte verschieben.

In diesem Zustand fotografieren die Wissenschaftler Zellen und Referenzpunktteppich unter dem Mikroskop ein erstes Mal. Schliesslich entfernen sie die Zellen, worauf sich die Unterlage in die Ursprungsform zurückzieht. Die Forschenden fotografieren dann den elastischen Teppich ein zweites Mal. Beim Vergleichen der Punktmuster auf den beiden Fotos können sie computerunterstützt für jeden Punkt der Zelle bestimmen, um welche Distanz er die elastische Unterlage zu verschieben vermochte. Weil auch die physikalischen Eigenschaften der Unterlage bekannt sind, kann man die dort wirkenden Kräfte bestimmen.

Regelmässiges Muster

In bisherigen TFM-Ausführungen wurden die fluoreszierenden Referenzpunkte zufällig in das Unterlagenmaterial eingelassen. Den Forschern um Poulikakos ist es nun erstmals gelungen, diese Punkte in einem regelmässigen Gittermuster auf einer Silikon-Unterlage gezielt anzuordnen. Sie nutzten dazu Nanodrip, eine vor wenigen Jahren im Labor von ETH-Professor Poulikakos entwickelte 3D-Nanodrucktechnik.

Die regelmässige und klar definierte Anordnung der Orientierungspunkte bringt Vorteile. «Wir müssen nun nicht mehr Zellen entfernen und ein Vorher- mit einem Nachher-Bild vergleichen. Stattdessen können wir die Kräfte mit einem einzigen Mikroskopiebild bestimmen», sagt Aldo Ferrari, Oberassistent in Poulikakos Gruppe. Somit können die Wissenschaftler Zellen neu über eine längere Zeit beobachten und zum Beispiel zu verschiedenen Zeitpunkten mehrmals messen, wie Botenstoffe die Kräfte einer Zelle beeinflussen.

Zusammenarbeit mehrerer Forschungsgruppen

Die technische Weiterentwicklung war möglich dank der engen Zusammenarbeit von zahlreichen ETH-Forschern: So bestimmte das Labor von ETH-Professor Edoardo Mazza die physikalischen Eigenschaften der Silikon-Unterlage und entwickelte numerische Modelle, die es ermöglichen, aus der Deformation der Unterlage die verursachenden Kräfte genau zu berechnen. ETH-Professorin Olga Sorkine-Hornung und Daniele Panozzo, Professor an der New York University, trugen zur computergestützten Berechnung der effektiven Verschiebung der Punkte aus den Mikroskopiebildern bei.
Ausserdem verwendeten die Wissenschaftler als Fluoreszenzfarbstoffe für das Orientierungsgitter blau, grün oder rot leuchtende Quantenpunkte (engl. quantum dots), dies in Zusammenarbeit der Gruppe von ETH-Professor und Quantenpunkt-Experte David Norris. Quantenpunkte sind Nanostrukturen aus Halbleitermaterialien mit massgeschneiderter Geometrie.

Genauer und in 3D

Die neue Methode hat noch weitere Vorteile: Sie ist genauer als bisherige Methoden. Auch ist es erstmals möglich, die Traktionskraftmikroskopie (und somit zelluläre Kraftmessungen) mit der Immunhistochemie zu kombinieren. Letzteres ist eine verbreitete zellbiologische Methode, bei der bestimmte Zellkomponenten mit fluoreszierenden Antikörpern sichtbargemacht werden. «Wir können damit in einem Mikroskopiebild gleichzeitig das Vorhandensein eines bestimmten Proteins und die wirkenden Kräfte anzeigen und dabei Zusammenhänge erkennen», sagt Ferrari. «Das ermöglicht eine neue Art von zellbiologischen Experimenten.»

Und schliesslich ist es dank der Weiterentwicklung auch erstmals möglich, Kräfte in Zellen nicht nur zweidimensional, sondern dreidimensional zu bestimmen. «Wir verwenden die Konfokalmikroskopie. Damit können wir von der Silikon-Unterlage und von der Zelle Schicht für Schicht mehrere Bilder aufnehmen und diese rechnergestützt zu einem 3D-Bild zusammensetzen», sagt Ferrari.

Anwendung in der Krebsforschung

«Das neue System ist einfach zu brauchen und bereit für Anwendungen», sagt Poulikakos. Die entwickelte Software ist quelloffen: Die ETH-Forschenden stellen sie Kollegen kostenlos zur Verfügung. Interessierte Wissenschaftler müssen im Labor allerdings die Nanodrucktechnologie anwenden können, um Quantenpunkt-Silikon-Unterlagen herzustellen.

Eingesetzt werden kann das neue System in der zellbiologischen und biomedizinischen Forschung, etwa zum Studium von Bewegungsabläufen von Zellen oder für Messungen von Wechselwirkungen zwischen Zellen und Implantaten. So pflegt Poulikakos‘ Gruppe beispielsweise eine Zusammenarbeit mit Krebsforschern des Politecnico di Milano. Dabei untersuchen sie in einer Karzinom-Art wie die Aktivität einzelner Gene und die Beweglichkeit von Zellen im Gewebe sowie die dabei wirkenden Kräfte zusammenhängen.

Literaturhinweis

Bergert M et al.: Confocal reference free traction force microscopy, Nature Communications 2016, doi: 10.1038/ncomms12814 [http://dx.doi.org/10.1038/ncomms12814]

Weitere Informationen:

https://www.ethz.ch/de/news-und-veranstaltungen/eth-news/news/2016/09/zellulaere...

Hochschulkommunikation | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Weitere Nachrichten aus der Kategorie Interdisziplinäre Forschung:

nachricht Mit Nanopartikel-Tandems gegen den Herzinfarkt
01.12.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Virtuelle Realität für Bakterien
01.12.2017 | Institute of Science and Technology Austria

Alle Nachrichten aus der Kategorie: Interdisziplinäre Forschung >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Immunsystem - Blutplättchen können mehr als bislang bekannt

LMU-Mediziner zeigen eine wichtige Funktion von Blutplättchen auf: Sie bewegen sich aktiv und interagieren mit Erregern.

Die aktive Rolle von Blutplättchen bei der Immunabwehr wurde bislang unterschätzt: Sie übernehmen mehr Funktionen als bekannt war. Das zeigt eine Studie von...

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Nanostrukturen steuern Wärmetransport: Bayreuther Forscher entdecken Verfahren zur Wärmeregulierung

Der Forschergruppe von Prof. Dr. Markus Retsch an der Universität Bayreuth ist es erstmals gelungen, die von der Temperatur abhängige Wärmeleitfähigkeit mit Hilfe von polymeren Materialien präzise zu steuern. In der Zeitschrift Science Advances werden diese fortschrittlichen, zunächst für Laboruntersuchungen hergestellten Funktionsmaterialien beschrieben. Die hiermit gewonnenen Erkenntnisse sind von großer Relevanz für die Entwicklung neuer Konzepte zur Wärmedämmung.

Von Schmetterlingsflügeln zu neuen Funktionsmaterialien

Im Focus: Lange Speicherung photonischer Quantenbits für globale Teleportation

Wissenschaftler am Max-Planck-Institut für Quantenoptik erreichen mit neuer Speichertechnik für photonische Quantenbits Kohärenzzeiten, welche die weltweite...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Call for Contributions: Tagung „Lehren und Lernen mit digitalen Medien“

15.12.2017 | Veranstaltungen

Die Stadt der Zukunft nachhaltig(er) gestalten: inter 3 stellt Projekte auf Konferenz vor

15.12.2017 | Veranstaltungen

Mit allen Sinnen! - Sensoren im Automobil

14.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Weltrekord: Jülicher Forscher simulieren Quantencomputer mit 46 Qubits

15.12.2017 | Informationstechnologie

Wackelpudding mit Gedächtnis – Verlaufsvorhersage für handelsübliche Lacke

15.12.2017 | Verfahrenstechnologie

Forscher vereinfachen Installation und Programmierung von Robotersystemen

15.12.2017 | Energie und Elektrotechnik