Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Winziger Nanomotor steuert Muskelkontraktionen

12.07.2011
Heidelberger Biophysiker entschlüsseln Funktionsweise des atomaren Bewegungsapparats

Das Eiweiß Myosin treibt als molekularer Motor Bewegungsvorgänge in allen Lebewesen an. Dies gilt für den Transport innerhalb der Zellen ebenso wie für Muskelkontraktionen. Wie diese sogenannte Motilität funktioniert, haben Forscher des Interdisziplinären Zentrums für Wissenschaftliches Rechnen (IWR) an der Universität Heidelberg herausgefunden. Sie konnten zeigen, auf welche Weise Strukturänderungen des Motorproteins Myosin Bewegungen erlauben.


Niedrige Energieniveaus entsprechen den wahrscheinlichen und stabilen Konformationen. Hohe Energieniveaus entsprechen den unwahrscheinlichen und kurzlebigen Konformationen. Die Energiefunktion beschreibt eine Energielandschaft, auf dessen Oberfläche die tiefen Täler die stabilen Konformationen darstellen. Benachbarte Täler sind durch Pässe über die Bergketten miteinander verbunden. Abbildung: Universität Heidelberg

Mit Hilfe von computerbasierten Hochleistungsberechnungen ließ sich dabei der bislang noch unbekannte Teil des Bewegungsablaufs darstellen. Die Forschungsergebnisse des Wissenschaftlerteams unter der Leitung des Biophysikers Dr. Stefan Fischer wurden im Journal PNAS veröffentlicht.

„Ähnlich wie der Otto-Motor eines Autos, der aufgrund sich koordiniert bewegender Kolben und Ventile funktioniert, besteht auch das Motorprotein Myosin aus mehreren beweglichen Teilen“, erläutert Dr. Fischer. Das aufeinander abgestimmte Umstellen molekularer Hebel führt zur Bewegung. Bislang war jedoch unbekannt, auf welche Weise dies geschieht. Ausgangspunkt der aktuellen Untersuchungen bildete ein 1971 entdeckter, vierstufiger Zyklus, der beschreibt, wie die beiden Protagonisten des Bewegungsprozesses – die Proteine Aktin und Myosin – sich binden und lösen:

Als langkettige, sich gegenüberliegende Fasern bilden sie die molekulare Architektur des Muskels. Die beiden Fasern sind miteinander verknüpft über den Myosinkopf, der die eigentliche Motordomäne des Proteins ist. Bei der Muskelkontraktion löst sich die Bindung zwischen dem Myosinkopf und der Aktinfaser und wird in den folgenden drei Zyklusphasen unter Energieverbrauch wieder eingegangen, und zwar wenige Nanometer von der ursprünglichen Bindungsstelle entfernt. Dadurch verschieben sich die Fasern gegeneinander und die Muskelzelle kontrahiert.

Die Heidelberger Wissenschaftler haben untersucht, welche strukturellen Änderungen innerhalb des Myosinkopfes diesen nach seinen beiden Entdeckern benannten Lymn-Taylor-Zyklus vorantreiben. „Wir kannten die Anordnung der rund 8.000 Atome des Myosinkopfes am jeweiligen Ende der drei wesentlichen Phasen des vierstuftigen Zyklus. Der Vergleich dieser atomaren Architekturen gibt jedoch nur ungenügend Auskunft darüber, welche Bewegungsvorgänge diese drei Momentaufnahmen zusammenführen. Erst die Berechnungen klären dieses Detailwissen“, sagt Dr. Fischer. Der Biophysiker entwickelte am IWR für molekulardynamische Probleme wie dieses eine maßgeschneiderte Rechenmethode. Sie heißt „Conjugate Peak Refinement“ (CPR) und basiert auf der Theorie der Energieoberfläche von Proteinen.

Diese Theorie besagt, dass jede Konformation, also die räumliche Anordnung der Atome, eines Proteins ein bestimmtes Energieniveau hat, das sich durch eine mathematische Funktion darstellen lässt. Niedrige Energie-niveaus entsprechen den wahrscheinlichen und stabilen Atomanordnungen, hohe Energieniveaus dagegen den unwahrscheinlichen und kurzlebigen Konformationen. „Die Energiefunktion beschreibt eine hochdimensionale Energielandschaft, auf dessen Oberfläche die tiefen Täler die stabilen Konformationen darstellen. Benachbarte Täler sind durch Pässe über die Bergketten miteinander verbunden. Die CPR-Berechnung der Wege über die niedrigsten Pässe ist identisch mit den korrekten Bewegungsabläufen des Moleküls“, erläutert Dr. Fischer. So konnten die Wege zwischen der bekannten räumlichen Anordnung der Atome beim Myosin im Lymn-Taylor-Zyklus auf Hochleistungsrechnern ermittelt werden: „Für jedes der 8.000 Atome auf der Energielandschaft wird eine Linie vom Atom-Ort im ersten Zustand zum gleichen Atom im Endzustand gelegt. Rechts und links dieser Linie sucht der Computer nach den Punkten, die den geringst möglichen Energieaufwand für die Atombewegung darstellen.“ Dieser Vorgang, bei dem 128 Computer-Prozessoren zum Einsatz kamen, dauerte sechs Monate.

Zu den Ergebnissen dieser Berechnung zählt auch eine von den Wissenschaftlern erstellte Animation. Dabei handelt es sich um eine exakte Darstellung der koordinierten Bewegungen der Myosinbauteile während der Aktinbindung und des Lösens des Atkins. „Diese winzigen architektonischen Details sind wichtig für die biologische Funktion. Ist ein Bauteil des Myosin-Motors fehlerhaft, so kommt es zu Störungen bei den Bewegungsvorgängen, wie zum Beispiel bei der Cardiomyopathie, einer Erkrankung des Herzmuskels. Das gewonnene Verständnis des molekularen Mechanismus des Myosin-Nanomotors kann helfen an neuen Medikamenten zu forschen oder dazu dienen, die Herstellung von synthetischen Nanomotoren zu inspirieren“, so der Heidelberger Wissenschaftler. Die Animation ist unter: http://www.iwr.uni-heidelberg.de/groups/biocomp/fischer abrufbar.

Originalveröffentlichung:
Sebastian Kühner & Stefan Fischer: Structural mechanism of the ATP-induced dissociation of rigor myosin from actin. PNAS, May 10, 2011, vol. 108, no. 19, p. 7793-7798, doi: 10.1073/pnas.1018420108
Hinweis an die Redaktionen:
Digitales Bildmaterial kann in der Pressestelle abgerufen werden.
Kontakt:
Dr. Stefan Fischer
Interdisziplinären Zentrums für Wissenschaftliches Rechnen
Telefon (06221) 54-8879
stefan.fischer@iwr.uni-heidelberg.de
Kommunikation und Marketing
Pressestelle, Telefon (06221) 54-2311
presse@rektorat.uni-heidelberg.de

Marietta Fuhrmann-Koch | idw
Weitere Informationen:
http://www.uni-heidelberg.de

Weitere Nachrichten aus der Kategorie Interdisziplinäre Forschung:

nachricht Blick unter den Gletscher
12.06.2017 | Universität Bern

nachricht ROBOLAB generiert neue Forschungsansätze und Kooperationen
08.05.2017 | Hochschule Mainz

Alle Nachrichten aus der Kategorie: Interdisziplinäre Forschung >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften