Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Winziger Nanomotor steuert Muskelkontraktionen

12.07.2011
Heidelberger Biophysiker entschlüsseln Funktionsweise des atomaren Bewegungsapparats

Das Eiweiß Myosin treibt als molekularer Motor Bewegungsvorgänge in allen Lebewesen an. Dies gilt für den Transport innerhalb der Zellen ebenso wie für Muskelkontraktionen. Wie diese sogenannte Motilität funktioniert, haben Forscher des Interdisziplinären Zentrums für Wissenschaftliches Rechnen (IWR) an der Universität Heidelberg herausgefunden. Sie konnten zeigen, auf welche Weise Strukturänderungen des Motorproteins Myosin Bewegungen erlauben.


Niedrige Energieniveaus entsprechen den wahrscheinlichen und stabilen Konformationen. Hohe Energieniveaus entsprechen den unwahrscheinlichen und kurzlebigen Konformationen. Die Energiefunktion beschreibt eine Energielandschaft, auf dessen Oberfläche die tiefen Täler die stabilen Konformationen darstellen. Benachbarte Täler sind durch Pässe über die Bergketten miteinander verbunden. Abbildung: Universität Heidelberg

Mit Hilfe von computerbasierten Hochleistungsberechnungen ließ sich dabei der bislang noch unbekannte Teil des Bewegungsablaufs darstellen. Die Forschungsergebnisse des Wissenschaftlerteams unter der Leitung des Biophysikers Dr. Stefan Fischer wurden im Journal PNAS veröffentlicht.

„Ähnlich wie der Otto-Motor eines Autos, der aufgrund sich koordiniert bewegender Kolben und Ventile funktioniert, besteht auch das Motorprotein Myosin aus mehreren beweglichen Teilen“, erläutert Dr. Fischer. Das aufeinander abgestimmte Umstellen molekularer Hebel führt zur Bewegung. Bislang war jedoch unbekannt, auf welche Weise dies geschieht. Ausgangspunkt der aktuellen Untersuchungen bildete ein 1971 entdeckter, vierstufiger Zyklus, der beschreibt, wie die beiden Protagonisten des Bewegungsprozesses – die Proteine Aktin und Myosin – sich binden und lösen:

Als langkettige, sich gegenüberliegende Fasern bilden sie die molekulare Architektur des Muskels. Die beiden Fasern sind miteinander verknüpft über den Myosinkopf, der die eigentliche Motordomäne des Proteins ist. Bei der Muskelkontraktion löst sich die Bindung zwischen dem Myosinkopf und der Aktinfaser und wird in den folgenden drei Zyklusphasen unter Energieverbrauch wieder eingegangen, und zwar wenige Nanometer von der ursprünglichen Bindungsstelle entfernt. Dadurch verschieben sich die Fasern gegeneinander und die Muskelzelle kontrahiert.

Die Heidelberger Wissenschaftler haben untersucht, welche strukturellen Änderungen innerhalb des Myosinkopfes diesen nach seinen beiden Entdeckern benannten Lymn-Taylor-Zyklus vorantreiben. „Wir kannten die Anordnung der rund 8.000 Atome des Myosinkopfes am jeweiligen Ende der drei wesentlichen Phasen des vierstuftigen Zyklus. Der Vergleich dieser atomaren Architekturen gibt jedoch nur ungenügend Auskunft darüber, welche Bewegungsvorgänge diese drei Momentaufnahmen zusammenführen. Erst die Berechnungen klären dieses Detailwissen“, sagt Dr. Fischer. Der Biophysiker entwickelte am IWR für molekulardynamische Probleme wie dieses eine maßgeschneiderte Rechenmethode. Sie heißt „Conjugate Peak Refinement“ (CPR) und basiert auf der Theorie der Energieoberfläche von Proteinen.

Diese Theorie besagt, dass jede Konformation, also die räumliche Anordnung der Atome, eines Proteins ein bestimmtes Energieniveau hat, das sich durch eine mathematische Funktion darstellen lässt. Niedrige Energie-niveaus entsprechen den wahrscheinlichen und stabilen Atomanordnungen, hohe Energieniveaus dagegen den unwahrscheinlichen und kurzlebigen Konformationen. „Die Energiefunktion beschreibt eine hochdimensionale Energielandschaft, auf dessen Oberfläche die tiefen Täler die stabilen Konformationen darstellen. Benachbarte Täler sind durch Pässe über die Bergketten miteinander verbunden. Die CPR-Berechnung der Wege über die niedrigsten Pässe ist identisch mit den korrekten Bewegungsabläufen des Moleküls“, erläutert Dr. Fischer. So konnten die Wege zwischen der bekannten räumlichen Anordnung der Atome beim Myosin im Lymn-Taylor-Zyklus auf Hochleistungsrechnern ermittelt werden: „Für jedes der 8.000 Atome auf der Energielandschaft wird eine Linie vom Atom-Ort im ersten Zustand zum gleichen Atom im Endzustand gelegt. Rechts und links dieser Linie sucht der Computer nach den Punkten, die den geringst möglichen Energieaufwand für die Atombewegung darstellen.“ Dieser Vorgang, bei dem 128 Computer-Prozessoren zum Einsatz kamen, dauerte sechs Monate.

Zu den Ergebnissen dieser Berechnung zählt auch eine von den Wissenschaftlern erstellte Animation. Dabei handelt es sich um eine exakte Darstellung der koordinierten Bewegungen der Myosinbauteile während der Aktinbindung und des Lösens des Atkins. „Diese winzigen architektonischen Details sind wichtig für die biologische Funktion. Ist ein Bauteil des Myosin-Motors fehlerhaft, so kommt es zu Störungen bei den Bewegungsvorgängen, wie zum Beispiel bei der Cardiomyopathie, einer Erkrankung des Herzmuskels. Das gewonnene Verständnis des molekularen Mechanismus des Myosin-Nanomotors kann helfen an neuen Medikamenten zu forschen oder dazu dienen, die Herstellung von synthetischen Nanomotoren zu inspirieren“, so der Heidelberger Wissenschaftler. Die Animation ist unter: http://www.iwr.uni-heidelberg.de/groups/biocomp/fischer abrufbar.

Originalveröffentlichung:
Sebastian Kühner & Stefan Fischer: Structural mechanism of the ATP-induced dissociation of rigor myosin from actin. PNAS, May 10, 2011, vol. 108, no. 19, p. 7793-7798, doi: 10.1073/pnas.1018420108
Hinweis an die Redaktionen:
Digitales Bildmaterial kann in der Pressestelle abgerufen werden.
Kontakt:
Dr. Stefan Fischer
Interdisziplinären Zentrums für Wissenschaftliches Rechnen
Telefon (06221) 54-8879
stefan.fischer@iwr.uni-heidelberg.de
Kommunikation und Marketing
Pressestelle, Telefon (06221) 54-2311
presse@rektorat.uni-heidelberg.de

Marietta Fuhrmann-Koch | idw
Weitere Informationen:
http://www.uni-heidelberg.de

Weitere Nachrichten aus der Kategorie Interdisziplinäre Forschung:

nachricht Bionik-Forschungsvorhaben untersucht mechanische Eigenschaften von Außenskeletten
26.03.2018 | Hochschule Bremen

nachricht Winzige Zell-Implantate funktionieren auch in vivo
19.03.2018 | Universität Basel

Alle Nachrichten aus der Kategorie: Interdisziplinäre Forschung >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gammastrahlungsblitze aus Plasmafäden

Neuartige hocheffiziente und brillante Quelle für Gammastrahlung: Anhand von Modellrechnungen haben Physiker des Heidelberger MPI für Kernphysik eine neue Methode für eine effiziente und brillante Gammastrahlungsquelle vorgeschlagen. Ein gigantischer Gammastrahlungsblitz wird hier durch die Wechselwirkung eines dichten ultra-relativistischen Elektronenstrahls mit einem dünnen leitenden Festkörper erzeugt. Die reichliche Produktion energetischer Gammastrahlen beruht auf der Aufspaltung des Elektronenstrahls in einzelne Filamente, während dieser den Festkörper durchquert. Die erreichbare Energie und Intensität der Gammastrahlung eröffnet neue und fundamentale Experimente in der Kernphysik.

Die typische Wellenlänge des Lichtes, die mit einem Objekt des Mikrokosmos wechselwirkt, ist umso kürzer, je kleiner dieses Objekt ist. Für Atome reicht dies...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Wie schwingt ein Molekül, wenn es berührt wird?

Physiker aus Regensburg, Kanazawa und Kalmar untersuchen Einfluss eines äußeren Kraftfeldes

Physiker der Universität Regensburg (Deutschland), der Kanazawa University (Japan) und der Linnaeus University in Kalmar (Schweden) haben den Einfluss eines...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Nachhaltige und innovative Lösungen

19.04.2018 | HANNOVER MESSE

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungsnachrichten

Auf dem Weg zur optischen Kernuhr

19.04.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics