Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie Roboter lernen, was sie tun sollen – ohne teuren Programmieraufwand

18.04.2014

Ein neues DFG-gefördertes Forschungsprojekt an der Universität Bayreuth befasst sich mit der intuitiven Programmierung von Robotern

Nicht nur in der Industrie, sondern auch in Privathaushalten gibt es viele Arbeitsabläufe, die mit hoher Zuverlässigkeit von Robotern erledigt oder unterstützt werden könnten.


Prof. Dr. Dominik Henrich,

Lehrstuhl für Robotik und Eingebettete Systeme an der Universität Bayreuth


Die Vision eines intuitiv programmierbaren Roboters für handwerkliche Aufgaben, hier beispielsweise in der Werkstatt oder beim Catering.

Hinsichtlich ihrer Stärke, Genauigkeit, Ausdauer und Schnelligkeit sind sie, besonders wenn es um die zuverlässige Wiederholung klar strukturierter Tätigkeiten geht, den Menschen häufig überlegen.

Damit Roboter derartige Tätigkeiten optimal ausführen, ist bisher eine zeit- und kostenintensive Programmierung erforderlich. Hierfür fehlen oft die nötigen Kenntnisse und finanziellen Mittel, so dass Privathaushalte, aber auch kleine und mittelständische Unternehmen von vornherein auf den Einsatz von Robotern verzichten.

An diesem Problem setzt eine neues, von der Deutschen Forschungsgemeinschaft (DFG) gefördertes Projekt an, das von Prof. Dr. Dominik Henrich am Lehrstuhl für Robotik und Eingebettete Systeme der Universität Bayreuth geleitet wird.

Das Forschungsvorhaben mit dem Namen INTROP – die Abkürzung steht für „Intuitive Programmierung von Roboter-Manipulatoren“ – befasst sich mit neuartigen Konzepten der Roboter-Programmierung. Menschen, die weder mit Programmiersprachen noch mit dem technischen Innenleben von Robotern vertraut sind, sollen in die Lage versetzt werden, Roboter in ihrem privaten oder beruflichen Arbeitsumfeld zu nutzen.

In Zukunft sollen der Nutzer oder die Nutzerin einen Roboter gleichsam „an die Hand nehmen“ und ihn durch die gewünschten Aufgaben führen können. Durch diesen intuitiven praktischen Umgang, nicht durch die Anwendung von Programmierkenntnissen lernt der Roboter, was von ihm erwartet wird.

Eine entscheidende Rolle spielen dabei Sensoren, wie beispielsweise Kameras. Diese beobachten die Interaktionen zwischen dem Menschen und dem Roboter-Manipulator, also demjenigen Teil des Roboters, der die gewünschten Arbeitsschritte ausführen soll.

In der Regel handelt es sich dabei um einen Arm mit einem Greifer, der sich bei der Einweisung in die jeweiligen Arbeitsschritte öffnen und schließen lässt. Die von den Sensoren registrierten Interkationen werden in Signale übersetzt, die ihrerseits beim Roboter bestimmte Bewegungsabläufe auslösen.

Das Ziel des INTROP-Projekts ist es, dass einem Roboter auf diese Weise nicht nur eine immer gleiche Abfolge einfacher Aktionen beigebracht werden kann. Der Roboter soll überdies lernen, komplexe Aufgaben zu lösen und dabei auf verschiedene Situationen flexibel und angemessen zu reagieren.

„Wenn es gelingt, solche intuitiv programmierbaren Roboter zu marktfähigen Preisen herzustellen, gibt es eine große Bandbreite möglicher Anwendungsgebiete“, erklärt Prof. Henrich. „Es sind bei weitem nicht nur Privathaushalte, die davon profitieren.

Auch in kleinen und mittelständischen produzierenden Unternehmen sowie in der Service- und Unterhaltungsbranche wird der Einsatz von Robotern erheblich attraktiver, wenn dabei keine hohen Kosten für die Programmierung entstehen. Selbst für große Industrieunternehmen eröffnen sich neue Möglichkeiten für die Gestaltung ihrer Arbeitsabläufe.“

Typische Beispiele für die Aufgaben, die von intuitiv programmierbaren Robotern übernommen werden können, sind das Sichten von Objekten – zum Beispiel ihre Identifikation und die Prüfung ihrer Vollständigkeit – oder das ausdauernde Halten von Objekten. Auch das Bewegen von Objekten, wie etwa das Gruppieren, Stapeln und Palettieren, oder das Sortieren von Objekten nach Größe, Farbe, Gewicht, und Form sind Arbeitsabläufe, bei denen der Mensch einem Roboter in Bezug auf Schnelligkeit, Ausdauer und Präzision in der Regel unterlegen ist.

Damit ein Roboter derartige Tätigkeiten erlernen kann, ohne dass der Nutzer oder die Nutzerin dabei eine Programmiersprache beherrschen muss, ist es allerdings erforderlich, dass sein technisches Innenleben entsprechend vorprogrammiert ist. Er muss so programmiert sein, dass er auf die Art und Weise, wie ein Mensch intuitiv mit ihm umgeht, mit den gewünschten Lern- und Arbeitsschritten reagiert.

Konzepte für eine solche Programmierung sollen im Rahmen des INTROP-Projekts an der Universität Bayreuth untersucht, erprobt und weiterentwickelt werden. Die DFG fördert diese Forschungsarbeiten zunächst für drei Jahre. Mit diesen Mitteln werden derzeit insbesondere zwei Promotionsstellen am Lehrstuhl für Robotik und Eingebettete Systeme eingerichtet. 

Ansprechpartner: 

Prof. Dr. Dominik Henrich
Lehrstuhl für Robotik und Eingebettete Systeme Universität Bayreuth D-95440 Bayreuth
Tel.: +49 (0)921 55 7680
E-Mail: dominik.henrich@uni-bayreuth.de

Christian Wißler | Universität Bayreuth
Weitere Informationen:
http://www.uni-bayreuth.de
http://www.uni-bayreuth.de/presse/Aktuelle-Infos/2014/065-INTROP.pdf

Weitere Nachrichten aus der Kategorie Interdisziplinäre Forschung:

nachricht ROBOLAB generiert neue Forschungsansätze und Kooperationen
08.05.2017 | Hochschule Mainz

nachricht Wie Coronaviren Zellen umprogrammieren
28.04.2017 | Justus-Liebig-Universität Gießen

Alle Nachrichten aus der Kategorie: Interdisziplinäre Forschung >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Im Focus: Neuer Ionisationsweg in molekularem Wasserstoff identifiziert

„Wackelndes“ Molekül schüttelt Elektron ab

Wie reagiert molekularer Wasserstoff auf Beschuss mit intensiven ultrakurzen Laserpulsen? Forscher am Heidelberger MPI für Kernphysik haben neben bekannten...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Diabetes Kongress 2017:„Closed Loop“-Systeme als künstliche Bauchspeicheldrüse ab 2018 Realität

23.05.2017 | Veranstaltungen

Aachener Werkzeugmaschinen-Kolloquium 2017: Internet of Production für agile Unternehmen

23.05.2017 | Veranstaltungen

14. Dortmunder MST-Konferenz zeigt individualisierte Gesundheitslösungen mit Mikro- und Nanotechnik

22.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Medikamente aus der CLOUD: Neuer Standard für die Suche nach Wirkstoffkombinationen

23.05.2017 | Biowissenschaften Chemie

Diabetes Kongress 2017:„Closed Loop“-Systeme als künstliche Bauchspeicheldrüse ab 2018 Realität

23.05.2017 | Veranstaltungsnachrichten

CAST-Projekt setzt Dunkler Materie neue Grenzen

23.05.2017 | Physik Astronomie