Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Virtuelle Realität für Bakterien

01.12.2017

Ein interdisziplinäres Forscherteam hat einzelne Bakterien mit einem Computer verbunden, um einen biologisch-digitalen Hybridschaltkreis herzustellen. Ihre Studie wurde in Nature Communications veröffentlicht.

Wissenschaftlern am Institute of Science and Technology Austria (IST Austria) ist es gelungen, das Verhalten einzelner Bakterien zu kontrollieren, indem sie diese an einen Computer koppelten. Mit Hilfe dieses Setups bauten sie einen genetischen Schaltkreis, der teils biologisch und teils digital ist. Das höchst interdisziplinäre Team umfasste die zwei gemeinsamen Erstautoren der Studie: den experimentellen Biologen Remy Chait und den Mathematiker Jakob Ruess, der mittlerweile am Institut Pasteur und am Inria Saclay in Frankreich tätig ist, sowie die IST Austria-Professoren Călin Guet und Gašper Tkačik.


Die Genexpression einzelner Zellen wird digital entlang vorgegebener Verläufe geleitet. 48 Escherichia coli-Zellen sind senkrecht im Bild angeordnet. Die Zeit verläuft von links nach rechts.

Bildcredit: Remy Chait

Ihr Experiment, bei dem sie die Genexpression in den Bakterien zum Oszillieren brachten und die Schwingungsmuster durch Anpassung der digitalen Kommunikation zwischen einzelnen Bakterien kontrollierten, diente als Machbarkeitsstudie. Eine mögliche Anwendung einer solchen biodigitalen Hybridtechnologie wäre das „Debuggen“ von komplexen biologischen Systemen auf eine ähnliche Weise, wie es bei komplexen Computercodes bereits geschieht: indem man die Komponenten einzeln testet, während man die Umgebung in einer Art virtueller Realität simuliert.

Wenn synthetische Biologen einen Mikroorganismus konstruieren wollen, der eine bestimmte Aufgabe erfüllt, der also zum Beispiel ein Krebsmedikament oder ein Antibiotikum als Teil seines Stoffwechselkreislauf herstellt, müssen Sie in der Regel eine erhebliche Anzahl von Änderungen am ursprünglichen Organismus vornehmen. Jede dieser Änderungen hat mehrere Auswirkungen, die mit den Auswirkungen aller anderen Änderungen wechselwirken und das Gesamtergebnis massiv verändern können. „Selbst wenn man versteht, was all die einzelnen Teile machen, weiß man nicht, was passiert, wenn man sie zusammenfügt“, erklärt Remy Chait die Herausforderung. „Es gibt Rückkopplungen zwischen ihnen, die den gesamten Schaltkreis unberechenbar machen.“

Eine mögliche Lösung für dieses Problem stammt aus der Softwareentwicklung und wird als Integrationstest bezeichnet. Bei diesem Ansatz wird jede Komponente einzeln getestet und ihre Wechselwirkung mit der Umgebung untersucht. Am besten simuliert man die Umgebung dabei durch einen virtuellen Raum und lässt die Komponente mit dieser virtuellen Welt interagieren. Genau diese Methode wollen die Forscher nun auch für biologische Systeme anwenden.

„Biologische Systeme sind komplex und wir würden davon profitieren, wenn wir sie wie einen Computercode debuggen könnten,“ erklärt Remy Chait. „Beim Modul- und Integrationstest simuliert man die Umgebung und schließt die einzelnen Komponenten einzeln an, um sicherzustellen, dass sie wie vorgesehen funktionieren. Dann kombiniert man sie paarweise und beginnt von vorne. Auf diese Weise sieht man den Punkt, an dem die Rückkopplungen und Störungen das System zu stören beginnen, und kann es entsprechend anpassen". Durch diese Methode kann der virtuelle Teil stetig reduziert werden, bis das System wieder voll biologisch ist - und dabei die gewünschte Funktion hat.

Die Forscher demonstrierten die Umsetzbarkeit von bio-digitalen Hybriden mit einem bio-digitalen Oszillator. In ihrem Aufbau produzieren modifizierte E. coli-Zellen ein Protein, das blau-violett fluoresziert. Dieses farbige Licht bildet die Schnittstelle zur digitalen Komponente: Alle sechs Minuten misst der Computer, wie viel Licht die Zelle erzeugt, und akkumuliert proportional dazu ein virtuelles Signalmolekül. Wenn das Signal einen bestimmten Schwellenwert überschreitet, wird die Produktion des fluoreszierenden Proteins durch die Zelle abgeschaltet, und zwar mit Hilfe eines Projektors.

Dieser beleuchtet die lichtempfindlichen Zellen mit rotem oder grünem Licht als „off“- oder „on“-Signal und verbindet somit die digitale Komponente wiederum mit den lebenden Teilen der Schaltung. „Die Zellen interagieren mit der simulierten Umgebung. Was sie tun, beeinflusst, was der Computer tut, und was der Computer tut, beeinflusst die Reaktion der Zelle. Wenn Sie Star Trek kennen, ist Ihnen das Holodeck sicher ein Begriff. Was wir gebaut haben, ist im Wesentlichen ein einfaches Holodeck für Gene von Mikroorganismen."

Als die Forscher ihre hybriden Schaltkreise testeten, leuchtete die Zellpopulation in blau-violett, und dieses Leuchten oszillierte; allerdings mit Variationen zwischen den einzelnen Bakterien. Da die Forscher aber wollten, dass die Bakterien synchron schwingen, änderten sie die digitale Komponente entsprechend und bauten ein virtuelles Kommunikationsnetzwerk zwischen den Bakterien auf. Dieses verteilt einen Teil des virtuellen Signals zwischen benachbarten Zellen, und die Gruppe von Bakterien zeigte verschiedene Arten der gewünschten kollektiven Oszillation.

Eine andere Anwendung der Plattform ist die Rückkopplungsregelung einzelner Zellen, welche die Genexpression des fluoreszierenden Gens so regelt, dass sie entlang vordefinierter Trajektorien verläuft. So könnten die Forscher eine Gruppe von Zellen dazu bringen, Bilder oder Buchstaben über die Zeit abzubilden (siehe Bild).

IST Austria
Das Institute of Science and Technology (IST Austria) in Klosterneuburg ist ein Forschungsinstitut mit eigenem Promotionsrecht. Das 2009 eröffnete Institut widmet sich der Grundlagenforschung in den Naturwissenschaften, Mathematik und Computerwissenschaften. Das Institut beschäftigt ProfessorInnen nach einem Tenure-Track-Modell und Post-DoktorandInnen sowie PhD StudentInnen in einer internationalen Graduate School. Neben dem Bekenntnis zum Prinzip der Grundlagenforschung, die rein durch wissenschaftliche Neugier getrieben wird, hält das Institut die Rechte an allen resultierenden Entdeckungen und fördert deren Verwertung. Der erste Präsident ist Thomas Henzinger, ein renommierter Computerwissenschaftler und vormals Professor an der University of California in Berkeley, USA, und der EPFL in Lausanne, Schweiz. www.ist.ac.at

Quelle:
Remy Chait, Jakob Ruess et al: “Shaping bacterial population behavior through computer-interfaced control of individual cells”
Nature Communications, 2017
doi:10.1038/s41467-017-01683-1
https://www.nature.com/articles/s41467-017-01683-1

Weitere Informationen:

https://www.nature.com/articles/s41467-017-01683-1 Link zur Studie
http://ist.ac.at/nc/de/news-media/news/news-detail/article/virtual-reality-for-b... Pressemitteilung auf der Webseite des IST Austria
http://ist.ac.at/de/forschung/forschungsgruppen/guet-gruppe/ Forschungsgruppe um Prof. Guet
http://ist.ac.at/de/forschung/forschungsgruppen/tkacik-gruppe/ Forschungsgruppe um Prof. Tkačik

Dr. Elisabeth Guggenberger | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Interdisziplinäre Forschung:

nachricht Stress im Sarkom: Neue Ansätze für die Krebstherapie entdeckt
22.12.2017 | Universitätsmedizin Göttingen - Georg-August-Universität

nachricht Mit Nanopartikel-Tandems gegen den Herzinfarkt
01.12.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

Alle Nachrichten aus der Kategorie: Interdisziplinäre Forschung >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape separates substance

Japanese researchers show the phase separation of two substances depends on the topology of the pore

Researchers at University of Tokyo Institute of Industrial Science (IIS) report a new physical model that shows how the topology of a porous material...

Im Focus: New study visualizes motion of water molecules, promises new wave of electronic devices

A novel approach to studying the viscosity of water has revealed new insights about the behavior of water molecules and may open pathways for liquid-based electronics.

A team of researchers led by the Department of Energy's Oak Ridge National Laboratory used a high-resolution inelastic X-ray scattering technique to measure...

Im Focus: Research trip to the mouth of the Amazon River: on the trail of the ocean’s material cycle

It is by far the most abundant river in the world. One fifth of the Earth’s entire freshwater supply flows from its mouth into the Atlantic pushing the ocean’s salt water several hundred kilometers out to sea. In April, Andrea Koschinsky, Professor of Geochemistry at Jacobs University, will travel to the estuary of the Amazon – as head of a recently approved, interdisciplinary research project on board the research ship, Meteor.

The Amazon River is almost 7,000 km long and is not only tremendously abundant but it also transports large quantities of trace metals such as iron and copper...

Im Focus: Forschungsreise an die Amazonas-Mündung: Dem Stoffkreislauf des Ozeans auf der Spur

Der Amazonas ist der mit Abstand wasserreichste Fluss der Welt. Ein Fünftel des gesamten Süßwassers der Erde strömt aus seiner Mündung in den Atlantik, das Wasser des Flusses drängt das Salzwasser des Meeres mehrere hundert Kilometer weit ins Meer hinaus. Im April wird Andrea Koschinsky, Professorin für Geochemie an der Jacobs University, zum Mündungsbecken des Amazonas aufbrechen – als Leiterin eines kürzlich bewilligten, interdisziplinären Forschungsprojekts an Bord des Forschungsschiffes Meteor.

Der fast 7000 Kilometer lange Amazonas ist nicht nur ungeheuer wasserreich, er transportiert auch große Mengen an Spurenmetallen wie Eisen oder Kupfer und...

Im Focus: Der kälteste Chip der Welt

Physikern der Universität Basel ist es erstmals gelungen, einen nanoelektronischen Chip auf eine Temperatur von weniger als 3 Millikelvin abzukühlen. Die Wissenschaftler vom Departement Physik und dem Swiss Nanoscience Institute haben diesen Rekord in Zusammenarbeit mit Kollegen aus Deutschland und Finnland aufgestellt, indem sie mithilfe der magnetischen Kühlung sowohl alle elektrischen Leitungen des Chips wie auch den Chip selbst kühlten. Die Ergebnisse wurden in der Wissenschaftszeitschrift «Applied Physics Letters» veröffentlicht.

Auch Wissenschaftler wetteifern um Rekorde. So arbeiten zahlreiche Arbeitsgruppen weltweit daran, mit Hightech-Kühlschränken Temperaturen möglichst nahe am...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Kopf-Hals-Tumore früh bekämpfen

20.12.2017 | Veranstaltungen

Neue Konfenzreihe in Berlin: Landscape 2018 - Ernährungssicherheit, Klimawandel, Nachhaltigkeit

18.12.2017 | Veranstaltungen

Call for Contributions: Tagung „Lehren und Lernen mit digitalen Medien“

15.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

UV-Licht für die Desinfektion von Verpackungen

29.12.2017 | Energie und Elektrotechnik

Selen schützt Nervenzellen im Gehirn

29.12.2017 | Biowissenschaften Chemie

Können Biomarker die individuelle Wirksamkeit eines Antidepressivums vorhersagen?

28.12.2017 | Biowissenschaften Chemie