Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Transistoren im Terahertz-Takt beeinflussen

18.11.2015

Ein interdisziplinäres Team der Ruhr-Universität Bochum hat einen neuen Zugang zum Inneren von Transistoren gefunden. Die Forscherinnen und Forscher beeinflussten das enthaltene Elektronengas, indem sie mithilfe von Resonatoren rhythmische Schwingungen im Terahertz-Bereich darin erzeugten. Die Ergebnisse berichten sie in der Zeitschrift „Scientific Reports“.

Transistoren lassen sich nicht nur mit Spannungen beeinflussen

Transistoren sind wesentliche Elemente der modernen Elektronik, die zum Schalten und Verstärken genutzt werden. Legt man von außen eine bestimmte Spannung an einen Transistor an, steuert das in seinem Inneren einen Strom, der wiederum eine neue Spannung ergibt.

Verglichen mit der außen angelegten Spannung kann die neue Spannung verstärkt sein, oszillieren oder logisch mit ihr verknüpft sein. Um über Strom und Spannung mit der Umgebung interagieren zu können, beinhalten Transistoren extrem dünne Elektronenschichten, sogenannte 2D-Elektronengase. Das RUB-Team zeigte, dass diese sich nicht nur durch Gleich- oder Radiofrequenzspannungen steuern lassen.

Elektronengas kann wie Wackelpudding zum Schwingen gebracht werden

„Ein 2D-Elektronengas ist wie ein Wackelpudding“, erklärt Prof. Dr. Andreas Wieck vom Lehrstuhl für Angewandte Festkörperphysik. „Drückt man mit einer charakteristischen Frequenz elektrisch von oben auf das Gas, entstehen Dicke- und Dichteschwingungen.“

Das Gas lässt sich also auch über elektrische Kräfte beeinflussen, die weit schneller variieren als jede Radio- oder Mikrowellenfrequenz. Da es gerade einmal zehn Nanometer dick ist, gehorchen die Schwingungen den Gesetzen der Quantenmechanik. Das bedeutet: Es können nur Schwingungen mit bestimmten Frequenzen entstehen, und zwar im Terahertz-Bereich, also im Bereich von 10^12 Hertz.

„Man muss sehr schnell auf das Elektronengas drücken“, veranschaulicht Wieck. Andreas Wieck, Dr. Shovon Pal Dr. Natham Jukam und weitere Kollegen der Arbeitsgruppe Terahertz-Spektroskopie und -Technologie sowie vom Lehrstuhl für Werkstoffe und Nanoelektronik fanden einen Weg, die erforderlichen Schwingungen auszulösen. So ergibt sich ein neuer Zugang zum Inneren eines Transistors.

Resonatoren erzeugen Dickeschwingungen

Die RUB-Forscher dampften 100 Nanometer über dem Elektronengas eine Vielzahl gleichartiger metallischer Resonatoren auf, die mit der erforderlichen festen Frequenz schwingen können. Das Elektronengas befand sich in einem Halbleiter und konnte über eine äußere Gleichspannung verändert werden, nämlich ein wenig dicker oder dünner gemacht werden.

Die Dicke bestimmt die Frequenz, die das Gas optimal zum Schwingen bringt. Über die äußere Spannung konnten die Forscher das Elektronengas auf die Resonatoren abstimmen, das Gas also so einstellen, dass der elektrische Wechseldruck der Resonatoren es optimal zum Schwingen im Terahertz-Bereich anregt.

Sensoren für die Chemie- und Umwelttechnik

Diese Technik könnte für Sensoren in der Chemie- und Umwelttechnik interessant sein, schlagen die Forscher vor. Denn Molekülschwingungen liegen typischerweise im Terahertz-Bereich. Über die modifizierten Transistoren ließen sich solche Schwingungen erfassen und Messfühler entwickeln, die individuell auf die Frequenzen bestimmter Gase oder Flüssigkeiten reagieren.

Förderung

Die Studie wurde finanziell gefördert durch das Bundesministerium für Bildung und Forschung, die Mercator-Stiftung, die Deutsch-Französische Hochschule Nice-Bochum, die RUB Research School, die International Max Planck Research School for Surface and Interface Engineering in Advanced Materials sowie durch die Deutsche Forschungsgemeinschaft.

Titelaufnahme

Pal et al. (2015): Ultrawide electrical tuning of light matter interaction in a high electron mobility transistor structure, Scientific Reports, DOI: 10.1038/srep16812

Weitere Informationen

Prof. Dr. Andreas Wieck, Lehrstuhl für Angewandte Festkörperphysik, Fakultät für Physik und Astronomie der Ruhr-Universität, 44780 Bochum, Tel. 0234/32-26726, E-Mail: andreas.wieck@rub.de

Dr. Shovon Pal, Lehrstuhl für Angewandte Festkörperphysik, Fakultät für Physik und Astronomie der Ruhr-Universität, 44780 Bochum, Tel. 0234/32-21175, E-Mail: shovon.pal@rub.de

Weitere Informationen:

http://aktuell.ruhr-uni-bochum.de/pm2015/pm00161.html.de

Dr. Julia Weiler | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Interdisziplinäre Forschung:

nachricht Speiseröhrenkrebs einfacher erkennen
06.03.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Neues Labor für die Aufbautechnik von ultradünnen Mikrosystemen
21.02.2017 | Hahn-Schickard

Alle Nachrichten aus der Kategorie: Interdisziplinäre Forschung >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise