Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Dem Trage- und Schlafkomfort auf der Spur

15.01.2009
Von Kupfermännern und Kunststoffkindern

Um den Trage- bzw. Schlafkomfort von Socken, Handschuhen und Kinder- Bettwaren noch exakter als bisher beurteilen zu können, stehen den Wissenschaftlern der Hohenstein Institute in Bönnigheim seit kurzem eine Reihe neuer Messapparaturen zur Verfügung.

Im Moment kommen die Thermoregulationsmodelle der menschlichen Hand und des Fußes sowie die thermische Gliederpuppe `Charlene´ in verschiedenen Forschungsprojekten zum Einsatz. Künftig können aber auch Hersteller, Handel und Beschaffungsorganisationen die Atmungsaktivität und Wärmeisolation von Hand- und Fußbekleidung mit sehr viel realistischeren Szenarien untersuchen lassen, als es mit dem Hohensteiner Hautmodell alleine möglich ist.

Thermische Gliederpuppe `Charlene´

Mit Hilfe der an den Hohenstein Instituten entwickelten thermischen Gliederpuppe `Charlene´ lässt sich der Schlafkomfort von Kinder-Bettwaren unter Berücksichtigung der physiologischen Besonderheiten von Kindern beurteilen und optimieren. Dazu wird bei `Charlene´, ebenso wie bei ihrem erwachsenen Pendant `Charlie 4´, die Wärmeproduktion des menschlichen Körpers mit Hilfe eines computergesteuerten Heizsystems nachgestellt. Mit einem Gewicht von 20 kg auf 92 cm Körperhöhe kann `Charlene´ aber deutlich weniger Körperwärme erzeugen, als der rund 75 kg schwere und 175 cm große `Charlie 4´ - ganz so, wie es auch bei ihren menschlichen Vorbildern der Fall ist. Um unter einer Bettdecke trotzdem eine angenehme Temperatur zu halten, muss deren Wärmeisolation entsprechend höher sein. Hinzu kommt, dass bei Kindern die Fähigkeit zur Thermoregulation noch nicht voll ausgebildet ist – der Körper reagiert deshalb nicht oder nur verzögert auf sich verändernde Umgebungstemperaturen. Außerdem sind noch nicht alle Schweißdrüsen aktiv. Somit ist die Gefahr des Auskühlens, aber auch der Überhitzung des Körpers ungleich höher als beim erwachsenen Menschen.

`Charlene´ besteht anders als `Charlie 4´ nicht aus Kupfer, sondern aus Kunststoff. Über ein computergesteuertes Heizsystem lässt sich die Wärmeproduktion für sechs verschiedene Körpersektionen getrennt voneinander regeln. Dabei gilt: Je mehr Wärme an einer Körperregion abgegeben wird, d. h. je mehr Energie dort zugeführt werden muss, um die angestrebte Hauttemperatur zu halten, desto schlechter ist dort die Wärmeisolation der Bettdecke.

Neben der isolierenden Wirkung ist es die Fähigkeit den Schweiß des Schläfers effektiv aufzunehmen und vom Körper wegzuleiten, die den Schlafkomfort von Bettwaren definiert.

Da `Charlene´ nicht schwitzen kann, werden die Untersuchungen an ihr mit Messungen am Hohensteiner Hautmodell kombiniert. Mit diesem sind Aussagen über den Wasserdampfdurchgangswiderstand als Maß für die „Atmungsaktivität“ sowie Angaben zum Schweißtransport, der Schweißpufferung sowie der Trocknungszeit der verwendeten textilen Materialien möglich.

Gewichtet nach ihrer Bedeutung für den subjektiven Schlafkomfort eines Menschen lässt sich aus all diesen Messwerten die sogenannte Schlafkomfortnote für Bettwaren ableiten. Diese kann in dem Bereich von 1 für „sehr gut“ bis 4 für „mangelhaft“ liegen. Die Komfortnoten werden heute von zahlreichen Herstellern im Handel in Form des Hohensteiner Qualitätslabels am Produkt aufgeführt und ermöglichen dem Verbraucher den einfachen Vergleich zwischen unterschiedlichen Produkten.

Thermoregulationsmodelle `schwitzende Hand´ und `schwitzender Fuß´

In der `schwitzenden Hand´ und dem `schwitzenden Fuß´ sind die Funktionsprinzipien des Hohensteiner Hautmodells und der thermischen Gliederpuppen miteinander kombiniert worden. D. h. sie geben sowohl Feuchtigkeit wie auch Wärme ab. Damit ist es erstmals möglich, die besonderen thermischen Bedingungen an den menschlichen Extremitäten realitätsnah zu simulieren. Entscheidend ist dabei, dass über die große Oberfläche an Fingern und Zehen dem Körper bei entsprechend kühlen Umgebungstemperaturen im Verhältnis zur Masse sehr viel mehr Wärme verloren geht, als zum Beispiel am Rumpf. Um eine komfortable Hauttemperatur aufrecht erhalten zu können, muss die Wärmeisolation von Socken, Schuhen und Handschuhen entsprechend hoch sein. Gleichzeitig müssen die verarbeiteten textilen Materialien den insbesondere bei körperlicher Aktivität entstehenden Schweiß sehr effektiv aufnehmen und vom Körper wegleiten.

Um zum Beispiel verlässliche Werte zum Tragekomfort einer Socken-Schuhkombinationen zu erhalten, mussten bisher alle in den Produkten verwendeten Materialien mit Hilfe des Hautmodells untersucht werden. Die Hochrechnungsszenarien aus dem Bereich der Bekleidung ließen jedoch allenfalls Näherungswerte zu. Mit Hilfe des `schwitzenden Fußes´ sind nun verlässliche und vor allem auch sehr differenzierte Aussagen sogar für einzelne Fußzonen möglich.

In ihrem Aufbau unterscheiden sich `schwitzende Hand´ und `schwitzender Fuß´ gravierend. Beim Thermoregulationsmodell der menschlichen Hand simuliert ein wasserdampfdurchlässiges Membranmaterial die menschliche Haut und gibt die Feuchtigkeit vollflächig ab. Der `schwitzende Fuß´ besteht aus 13 Metallsegmenten – der Schweiß wird über 32 Einzeldüsen abgegeben. Um den großen Einfluß von Ventilationseffekten im Schuh auf den thermischen Komfort berücksichtigen zu können, werden beim `schwitzenden Fuß´ motorisch angetrieben Laufbewegungen simuliert. Gemein haben alle neuen Messapparaturen im Bereich der Bekleidungsphysiologie, dass ein Großteil der Entwicklungszeit in die Umsetzung der aufwendigen Steuerungs- und Messtechnik geflossen ist: Um die abgegebene Schweißmenge und die zur Aufrechterhaltung komfortabler Temperaturen an der Haut notwendige Energie exakt ermitteln zu können, musste das Team von Prof. Umbach wie auch schon bei der Entwicklung der thermischen Gliederpuppe `Charlie 4´ und des Hohensteiner Hautmodells technisches und wissenschaftliches Neuland betreten. Von den gewonnenen Erkenntnissen können nun aber Hersteller weltweit profitieren – und letztendlich auch Verbraucher, die sich über optimierte Produkte für Beruf und Freizeit freuen dürfen.

Rose-Marie Riedl | Forschungsinstitut Hohenstein
Weitere Informationen:
http://www.hohenstein.de
http://www.hohenstein.de/content/content1.asp?hohenstein=33-0-0-592-2009

Weitere Nachrichten aus der Kategorie Interdisziplinäre Forschung:

nachricht Grösster Elektrolaster der Welt nimmt Arbeit auf
20.04.2018 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht Bionik-Forschungsvorhaben untersucht mechanische Eigenschaften von Außenskeletten
26.03.2018 | Hochschule Bremen

Alle Nachrichten aus der Kategorie: Interdisziplinäre Forschung >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Metalle verbinden ohne Schweißen

Kieler Prototyp für neue Verbindungstechnik wird auf Hannover Messe präsentiert

Schweißen ist noch immer die Standardtechnik, um Metalle miteinander zu verbinden. Doch das aufwändige Verfahren unter hohen Temperaturen ist nicht überall...

Im Focus: Software mit Grips

Ein computergestütztes Netzwerk zeigt, wie die Ionenkanäle in der Membran von Nervenzellen so verschiedenartige Fähigkeiten wie Kurzzeitgedächtnis und Hirnwellen steuern können

Nervenzellen, die auch dann aktiv sind, wenn der auslösende Reiz verstummt ist, sind die Grundlage für ein Kurzzeitgedächtnis. Durch rhythmisch aktive...

Im Focus: Der komplette Zellatlas und Stammbaum eines unsterblichen Plattwurms

Von einer einzigen Stammzelle zur Vielzahl hochdifferenzierter Körperzellen: Den vollständigen Stammbaum eines ausgewachsenen Organismus haben Wissenschaftlerinnen und Wissenschaftler aus Berlin und München in „Science“ publiziert. Entscheidend war der kombinierte Einsatz von RNA- und computerbasierten Technologien.

Wie werden aus einheitlichen Stammzellen komplexe Körperzellen mit sehr unterschiedlichen Funktionen? Die Differenzierung von Stammzellen in verschiedenste...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Metalle verbinden ohne Schweißen

23.04.2018 | HANNOVER MESSE

Revolutionär: Ein Algensaft deckt täglichen Vitamin-B12-Bedarf

23.04.2018 | Medizin Gesundheit

Wie zerfallen kleinste Bleiteilchen?

23.04.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics