Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Dem Trage- und Schlafkomfort auf der Spur

15.01.2009
Von Kupfermännern und Kunststoffkindern

Um den Trage- bzw. Schlafkomfort von Socken, Handschuhen und Kinder- Bettwaren noch exakter als bisher beurteilen zu können, stehen den Wissenschaftlern der Hohenstein Institute in Bönnigheim seit kurzem eine Reihe neuer Messapparaturen zur Verfügung.

Im Moment kommen die Thermoregulationsmodelle der menschlichen Hand und des Fußes sowie die thermische Gliederpuppe `Charlene´ in verschiedenen Forschungsprojekten zum Einsatz. Künftig können aber auch Hersteller, Handel und Beschaffungsorganisationen die Atmungsaktivität und Wärmeisolation von Hand- und Fußbekleidung mit sehr viel realistischeren Szenarien untersuchen lassen, als es mit dem Hohensteiner Hautmodell alleine möglich ist.

Thermische Gliederpuppe `Charlene´

Mit Hilfe der an den Hohenstein Instituten entwickelten thermischen Gliederpuppe `Charlene´ lässt sich der Schlafkomfort von Kinder-Bettwaren unter Berücksichtigung der physiologischen Besonderheiten von Kindern beurteilen und optimieren. Dazu wird bei `Charlene´, ebenso wie bei ihrem erwachsenen Pendant `Charlie 4´, die Wärmeproduktion des menschlichen Körpers mit Hilfe eines computergesteuerten Heizsystems nachgestellt. Mit einem Gewicht von 20 kg auf 92 cm Körperhöhe kann `Charlene´ aber deutlich weniger Körperwärme erzeugen, als der rund 75 kg schwere und 175 cm große `Charlie 4´ - ganz so, wie es auch bei ihren menschlichen Vorbildern der Fall ist. Um unter einer Bettdecke trotzdem eine angenehme Temperatur zu halten, muss deren Wärmeisolation entsprechend höher sein. Hinzu kommt, dass bei Kindern die Fähigkeit zur Thermoregulation noch nicht voll ausgebildet ist – der Körper reagiert deshalb nicht oder nur verzögert auf sich verändernde Umgebungstemperaturen. Außerdem sind noch nicht alle Schweißdrüsen aktiv. Somit ist die Gefahr des Auskühlens, aber auch der Überhitzung des Körpers ungleich höher als beim erwachsenen Menschen.

`Charlene´ besteht anders als `Charlie 4´ nicht aus Kupfer, sondern aus Kunststoff. Über ein computergesteuertes Heizsystem lässt sich die Wärmeproduktion für sechs verschiedene Körpersektionen getrennt voneinander regeln. Dabei gilt: Je mehr Wärme an einer Körperregion abgegeben wird, d. h. je mehr Energie dort zugeführt werden muss, um die angestrebte Hauttemperatur zu halten, desto schlechter ist dort die Wärmeisolation der Bettdecke.

Neben der isolierenden Wirkung ist es die Fähigkeit den Schweiß des Schläfers effektiv aufzunehmen und vom Körper wegzuleiten, die den Schlafkomfort von Bettwaren definiert.

Da `Charlene´ nicht schwitzen kann, werden die Untersuchungen an ihr mit Messungen am Hohensteiner Hautmodell kombiniert. Mit diesem sind Aussagen über den Wasserdampfdurchgangswiderstand als Maß für die „Atmungsaktivität“ sowie Angaben zum Schweißtransport, der Schweißpufferung sowie der Trocknungszeit der verwendeten textilen Materialien möglich.

Gewichtet nach ihrer Bedeutung für den subjektiven Schlafkomfort eines Menschen lässt sich aus all diesen Messwerten die sogenannte Schlafkomfortnote für Bettwaren ableiten. Diese kann in dem Bereich von 1 für „sehr gut“ bis 4 für „mangelhaft“ liegen. Die Komfortnoten werden heute von zahlreichen Herstellern im Handel in Form des Hohensteiner Qualitätslabels am Produkt aufgeführt und ermöglichen dem Verbraucher den einfachen Vergleich zwischen unterschiedlichen Produkten.

Thermoregulationsmodelle `schwitzende Hand´ und `schwitzender Fuß´

In der `schwitzenden Hand´ und dem `schwitzenden Fuß´ sind die Funktionsprinzipien des Hohensteiner Hautmodells und der thermischen Gliederpuppen miteinander kombiniert worden. D. h. sie geben sowohl Feuchtigkeit wie auch Wärme ab. Damit ist es erstmals möglich, die besonderen thermischen Bedingungen an den menschlichen Extremitäten realitätsnah zu simulieren. Entscheidend ist dabei, dass über die große Oberfläche an Fingern und Zehen dem Körper bei entsprechend kühlen Umgebungstemperaturen im Verhältnis zur Masse sehr viel mehr Wärme verloren geht, als zum Beispiel am Rumpf. Um eine komfortable Hauttemperatur aufrecht erhalten zu können, muss die Wärmeisolation von Socken, Schuhen und Handschuhen entsprechend hoch sein. Gleichzeitig müssen die verarbeiteten textilen Materialien den insbesondere bei körperlicher Aktivität entstehenden Schweiß sehr effektiv aufnehmen und vom Körper wegleiten.

Um zum Beispiel verlässliche Werte zum Tragekomfort einer Socken-Schuhkombinationen zu erhalten, mussten bisher alle in den Produkten verwendeten Materialien mit Hilfe des Hautmodells untersucht werden. Die Hochrechnungsszenarien aus dem Bereich der Bekleidung ließen jedoch allenfalls Näherungswerte zu. Mit Hilfe des `schwitzenden Fußes´ sind nun verlässliche und vor allem auch sehr differenzierte Aussagen sogar für einzelne Fußzonen möglich.

In ihrem Aufbau unterscheiden sich `schwitzende Hand´ und `schwitzender Fuß´ gravierend. Beim Thermoregulationsmodell der menschlichen Hand simuliert ein wasserdampfdurchlässiges Membranmaterial die menschliche Haut und gibt die Feuchtigkeit vollflächig ab. Der `schwitzende Fuß´ besteht aus 13 Metallsegmenten – der Schweiß wird über 32 Einzeldüsen abgegeben. Um den großen Einfluß von Ventilationseffekten im Schuh auf den thermischen Komfort berücksichtigen zu können, werden beim `schwitzenden Fuß´ motorisch angetrieben Laufbewegungen simuliert. Gemein haben alle neuen Messapparaturen im Bereich der Bekleidungsphysiologie, dass ein Großteil der Entwicklungszeit in die Umsetzung der aufwendigen Steuerungs- und Messtechnik geflossen ist: Um die abgegebene Schweißmenge und die zur Aufrechterhaltung komfortabler Temperaturen an der Haut notwendige Energie exakt ermitteln zu können, musste das Team von Prof. Umbach wie auch schon bei der Entwicklung der thermischen Gliederpuppe `Charlie 4´ und des Hohensteiner Hautmodells technisches und wissenschaftliches Neuland betreten. Von den gewonnenen Erkenntnissen können nun aber Hersteller weltweit profitieren – und letztendlich auch Verbraucher, die sich über optimierte Produkte für Beruf und Freizeit freuen dürfen.

Rose-Marie Riedl | Forschungsinstitut Hohenstein
Weitere Informationen:
http://www.hohenstein.de
http://www.hohenstein.de/content/content1.asp?hohenstein=33-0-0-592-2009

Weitere Nachrichten aus der Kategorie Interdisziplinäre Forschung:

nachricht Neues interdisziplinäres Zentrum für Physik und Medizin in Erlangen
25.07.2017 | Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.

nachricht Entzündungshemmende Birkeninhaltsstoffe nachhaltig nutzen
03.07.2017 | Christian-Albrechts-Universität zu Kiel

Alle Nachrichten aus der Kategorie: Interdisziplinäre Forschung >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

Sensibilisierungskampagne zu Pilzinfektionen

15.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Graduiertenschule HyPerCells entwickelt hocheffiziente Perowskit- Dünnschichtsolarzelle

17.08.2017 | Energie und Elektrotechnik

Forschungsprojekt zu optimierten Oberflächen von Metallpulver-Spritzguss-Werkzeugen

17.08.2017 | Verfahrenstechnologie

Fernerkundung für den Naturschutz

17.08.2017 | Ökologie Umwelt- Naturschutz