Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Tintenstrahler druckt Blutgefäß-Vorläufer

18.01.2012
Tropfen biologischer Tinte verleihen Zellen 3D-Anordnung

Die künstliche Züchtung lebender Gewebe - meist als "Tissue Engineering" bezeichnet - gilt als ein Hoffnungsträger der Medizin, etwa für den Ersatz beschädigter Zellen oder für die Medikamentenforschung. Einen Schritt in Richtung einer künftigen Realisierung ist Forschern vom Ecole Polytechnique Federale de Lausanne (EPFL) http://epfl.ch gelungen.

Wie sie in der Zeitschrift "Advanced Materials" berichten, konnten sie biologischen Materialien mittels einer speziellen Tintenstrahl-Drucktechnik eine 3D-Struktur verleihen, die jener von kapillaren Blutgefäßen entspricht.

"Werden nach einem Unfall oder einer Erkrankung Organe oder andere Teile des menschlichen Körpers ersetzt, braucht man hohle Strukturen, durch die man Flüssigkeiten wie etwa Blut, Nährstoffe und Proteine pumpen und Abfallstoffe wieder abtransportieren kann. Diese Strukturen können durch spezielle Tintenstrahltechnik künstlich erzeugt werden", erklärt Jürgen Brugger, Leiter des EPFL-Labors für Microsysteme, im pressetext-Interview.

Tinte steuert Zellverhalten

Damit sie ein Gewebe bilden, brauchen Zellen Signale, die ihr erforderliches Verhalten wie etwa Proliferation, Migration, Differenzierung oder programmierten Zelltod anregen. Bei natürlichen Zellen stammen diese Signale von Molekülen der Extrazellularmatrix (ECM). Nach einer grundlegenden Untersuchung dieser Matrix und deren Kommunikation mit den Zellen konnten die Forscher diese nachbauen - in Form eines Gels, das als "biologische Tinte" dient.

Dieses Gel kann durch Tintenstrahl-Drucktechnik zur Herstellung feingliedriger Kanäle aus Biomaterial verwendet werden. Ein Drucker sendet Tropfen davon auf ein mit Kalzium durchtränktes Substrat. Dieses geliert beim Auftreffen rasch und bildet eine dreidimensionale Form. Wie das Ergebnis aussieht, hängt von der jeweiligen Programmierung ab. Die Lausanner Forscher nahmen als Vorgabe ein kapillares Blutgefäß.

Tropfen bilden 3D-Struktur

Für einige der bisherigen Probleme fand sich nun eine Lösung. Brugger vergleicht das Verfahren mit einer Kerze, deren Wachs auf einen Tisch tropft. "Treffen Tropfen zeitlich und räumlich unmittelbar hintereinander auf, verschmelzen sie miteinander und die 3D-Struktur geht verloren. Damit diese bestehen bleibt, muss zwischen den Tropfen zunächst eine Lücke bleiben, die erst Sekunden später nach der Gelierung aufgefüllt wird."

Dass die Technik funktioniert, beweist die Produktion einer Röhre aus weichem Biomaterial, durch die bereits Flüssigkeiten geschleust wurden. Sobald das Tissue Engineering auch in anderen Bereichen weiter fortgeschritten ist, könnten derartige Röhrchen ein Gerüst bilden, um das lebende Zellen ansiedelt werden, erklärt der Experte. "Alles weitere bleibt dann dem natürlichen Wachstum überlassen, bis man das künstlich geschaffene Material abbauen kann."

Johannes Pernsteiner | pressetext.redaktion
Weitere Informationen:
http://epfl.ch

Weitere Nachrichten aus der Kategorie Interdisziplinäre Forschung:

nachricht Speiseröhrenkrebs einfacher erkennen
06.03.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Neues Labor für die Aufbautechnik von ultradünnen Mikrosystemen
21.02.2017 | Hahn-Schickard

Alle Nachrichten aus der Kategorie: Interdisziplinäre Forschung >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Organisch-anorganische Heterostrukturen mit programmierbaren elektronischen Eigenschaften

29.03.2017 | Energie und Elektrotechnik

Klein bestimmt über groß?

29.03.2017 | Physik Astronomie

OLED-Produktionsanlage aus einer Hand

29.03.2017 | Messenachrichten