Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schwimmender Roboter nutzt Flosse statt Propeller

22.09.2009
Antrieb nach Fischvorbild erleichtert Einsatz in Flachwasser

Forscher am Ocean Technologies Lab der University of Bath haben einen schwimmenden Roboter entwickelt, der auf einen fischähnlichen Flossenschlag statt einem Propeller als Antriebssystem setzt.

Dadurch kann sich der "Gymnobot" in komplexen Flachwasser-Umgebungen besser bewegen. "Ein konventioneller Propeller kann sich hoffnungslos in Seetang verfangen und in beengten Kanälen oder Korallenriffen sich oder die Umgebung durch Anschlagen schwer beschädigen", meint William Megill, Biomimetrik-Spezialist am Ocean Technologies Lab, gegenüber pressetext.

Eben solche Probleme kann die flexible Flosse verhindern. Gleichzeitig ist die Antriebslösung potenziell energieeffizienter und auch für den Tiefsee-Einsatz interessant.

Der Gymnobot nutzt nach dem biologischen Vorbild des Amerikanischen Weißstirn-Messerfischs eine Flosse, die entlang der Unterseite des starren Körpers verläuft und den Roboter durch wellenförmige Bewegungen antreibt. "Diese Form des Antriebs ist potenziell viel effizienter als konventionelle Propeller", so Megill. Die besten derzeit verfügbaren rotierenden Propeller würden etwa 70 bis 80 Prozent der eingesetzten Energie in nutzbaren Schub umwandeln und viel mehr sei physikalisch nicht mehr möglich. "Fische dagegen wandeln 90 bis 95 Prozent des Muskelkraft in nutzbaren Schub um", so der Wissenschaftler. Davon sei der Gymnobot zwar noch weit entfernt, doch hoffe das Team, dass diese hohe Effizienz langfristig mit Robotern erreicht werden kann - was Propeller definitiv ausstechen würde. Allerdings sei der erreichbare Schub begrenzt, weshalb die Antriebstechnik eher kompakten Wasserfahrzeugen vorbehalten bleiben dürfte, so Megill.

Schon jetzt hat der Flossenantrieb den Vorteil, dass er im Gegensatz zum einen Propeller keinen Seetang-Knoten aufwickeln und sich damit selbst blockieren kann. Das macht die Lösung beispielsweise für den Einsatz in küstennahen Gewässern zum Studium von Ökosystemen oder der Überprüfung von Strukturen wie Bohrinseln interessant. Für Tiefseeanwendungen könnte der Ansatz aus einem anderen Grund ebenso attraktiv sein. "Eines der größten Probleme in der Tiefsee-Technik ist, dass teure Dichtungen um rotierende Achsen nötig sind, um das Wasser bei hohem Druck aus den trockenen Teilen des Roboters zu halten", erklärt Megill. Ein Roboter mit schwingender Flosse dagegen könnte einfach von einer durchgehenden Außenhaut umschlossen werden.

Die Entwicklung am Gymnobot geht indes weiter. "In späteren Projektstadien hoffen wir zu studieren, wie das Wasser um die Flosse fließt", so Gymnobot-Entwicklerin Keri Collins. Speziell die entstehenden Wirbel seien von Interesse, da manche Fische beim Schwimmen zwar durch ihren Flossenschlag zunächst Wirbel bilden, diese aber dann durch den Gegenschlag wieder zerstören. Somit wird die im Wirbel steckende Energie wiederverwertet, die Schwimmbewegung also insgesamt energieeffizienter. "Es wird sehr interessant zu sehen, wie sich der Schub ändert, wenn wir bei unserer Flosse von einer Wellenbewegung mit konstanter Amplitude zu einer übergehen, die sich an einem Ende verjüngt", meint daher Collins.

Thomas Pichler | pressetext.deuschland
Weitere Informationen:
http://staff.bath.ac.uk/enswmm/lab

Weitere Berichte zu: Antrieb Flosse Flossenschlag Gymnobot Pacific Ocean Propeller Roboter Schub Wirbel specimen processing

Weitere Nachrichten aus der Kategorie Interdisziplinäre Forschung:

nachricht Neues Nano-CT-Gerät liefert hochauflösende Aufnahmen von winzigem Stummelfüßer-Bein
07.11.2017 | Technische Universität München

nachricht Neues Verbundprojekt erforscht die neurodegenerative Erkrankung Morbus Alzheimer
12.09.2017 | Universitätsklinikum Würzburg

Alle Nachrichten aus der Kategorie: Interdisziplinäre Forschung >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kleine Strukturen – große Wirkung

Innovative Schutzschicht für geringen Verbrauch künftiger Rolls-Royce Flugtriebwerke entwickelt

Gemeinsam mit Rolls-Royce Deutschland hat das Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS im Rahmen von zwei Vorhaben aus dem...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: Transparente Beschichtung für Alltagsanwendungen

Sport- und Outdoorbekleidung, die Wasser und Schmutz abweist, oder Windschutzscheiben, an denen kein Wasser kondensiert – viele alltägliche Produkte können von stark wasserabweisenden Beschichtungen profitieren. Am Karlsruher Institut für Technologie (KIT) haben Forscher um Dr. Bastian E. Rapp einen Werkstoff für solche Beschichtungen entwickelt, der sowohl transparent als auch abriebfest ist: „Fluoropor“, einen fluorierten Polymerschaum mit durchgehender Nano-/Mikrostruktur. Sie stellen ihn in Nature Scientific Reports vor. (DOI: 10.1038/s41598-017-15287-8)

In der Natur ist das Phänomen vor allem bei Lotuspflanzen bekannt: Wassertropfen perlen von der Blattoberfläche einfach ab. Diesen Lotuseffekt ahmen...

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

IfBB bei 12th European Bioplastics Conference mit dabei: neue Marktzahlen, neue Forschungsthemen

22.11.2017 | Veranstaltungen

Zahnimplantate: Forschungsergebnisse und ihre Konsequenzen – 31. Kongress der DGI

22.11.2017 | Veranstaltungen

Tagung widmet sich dem Thema Autonomes Fahren

21.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Bakterien als Schrittmacher des Darms

22.11.2017 | Biowissenschaften Chemie

Ozeanversauerung schädigt Miesmuscheln im Frühstadium

22.11.2017 | Biowissenschaften Chemie

Die gefrorenen Küsten der Arktis: Ein Lebensraum schmilzt davon

22.11.2017 | Geowissenschaften