Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Prophet unter der Neutronenlupe

20.08.2009
Florenzer Kunstobjekt wird am FRM II der TU München untersucht

Kunstgeschichte und Physik haben auf den ersten Blick nicht viel gemeinsam. Beim europäischen Forschungsprojekt Ancient Charm gehen die beiden Disziplinen jedoch eine enge Zusammenarbeit ein.

So werden an der Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II) der Technischen Universität München (TUM) historisch wertvolle Gegenstände mit Neutronen analysiert.

Mit Hilfe von Neutronen untersuchen die Physiker, Archäologen und Restauratoren am FRM II in Garching zerstörungsfrei, wie die Objekte gefertigt wurden und mit welchen Methoden man sie am besten restauriert.

Hunderte Touristen bestaunen täglich die bronzene Paradiespforte des Baptisteriums San Giovanni in Florenz. Der Renaissance-Bildhauer Lorenzo Ghiberti zeigt in seinem Meisterwerk aus den Jahren 1425 bis 1442 Szenen aus dem Alten Testament, umrahmt von Propheten- und Evangelistenköpfen.

Einen dieser Bronzeköpfe des Florenzer Kunstwerks haben jetzt die die Physiker Lea Canella (TUM) und Ralf Schulze (Universität zu Köln) am Instrument PGAA (Prompte Gamma Aktivierungsanalyse) am FRM II mit Neutronen untersucht. „Nur der anwesende Museumskurator durfte den mehrere Millionen Euro teuren Kopf bewegen“, erzählt Ralf Schulze. „Wir mussten darauf achten, dass er rund um die Uhr sicher verstaut war. Wenn sie nicht untersucht wurde, war die Bronzeplastik in einem Tresor verschlossen.“

Restauratoren aus Florenz hatten an dem Prophetenkopf zwei verschiedene Reinigungs-Methoden ausprobiert: Einen Teil der von den Jahren geschwärzten Bronzeoberfläche reinigten sie mit Laser, einen anderen Teil chemisch mit Salzen und ein dritter Teil des Kopfes blieb ungereinigt. Die Neutronenanalyse im Rahmen des EU-Projekts „Ancient Charm“ sollte ihnen zerstörungsfrei zeigen, welche Reinigungs-Methode die beste ist.

Bei der Untersuchung am FRM II lenkten die Physiker Canella und Schulz die Neutronen so auf die jeweilige Stelle des Bronzestücks, dass sie das Metall nur leicht an der Oberfläche streiften. Durch vertikales Verschieben des Kopfes drang der Neutronenstrahl unterschiedlich tief in das Material ein. Beim Zusammenstoß mit den Neutronen gaben die verschiedenen Materialien in dem Prophetenkopf ein charakteristisches Muster an Gammastrahlen ab. Diese ausfallenden Strahlen maßen die Physiker an ihrem wissenschaftlichen Gerät, sodass sie Rückschlüsse auf die Materialzusammensetzung an der bestimmten Stelle ziehen konnten.

Neutronen dringen dabei weitaus tiefer in die Bronze ein als es etwa Röntgenstrahlen vermögen. „Für derartige Messungen an wertvollen Objekten ist eine hohe Intensität mit an einem Punkt fokussierten Neutronen erforderlich“, erklärt die verantwortliche Wissenschaftlerin am Gerät PGAA, Dr. Petra Kudejova, die für die Universität zu Köln am FRM II forscht. „Diese Möglichkeit haben wir nur an der Forschungs-Neutronenquelle in Garching.“

Im Fall der Bronzeköpfe vom Florenzer Paradiestor stellte sich bei der Analyse mit Neutronen heraus, dass die chemische Restaurierungsmethode die effizientere ist. Auf der derart gereinigten Oberfläche fanden die Physiker nämlich mit ihrer Neutronenanalyse weniger Rückstände des Elements Chlor, welches Bestandteil der schwarzen Ablagerungen ist. So wissen die Restauratoren nun, wie sie die wertvollen Ghiberti-Plastiken reinigen können.

Ein anderes interessantes Ergebnis für die Kunstgeschichte lieferte eine zweite Untersuchung des Bronzekopfs mit Neutronen am Instrument ANTARES (Advanced Neutron Tomography and Radiography Experimental System) am FRM II. Hier wurde statt der Oberfläche die komplette Plastik aus Bronze mit Neutronen durchleuchtet. Auf dem so entstandenen Bild - der Radiographie - wurde sichtbar, dass der Kopf offenbar beim ersten Guss vor fast 600 Jahren ein Loch davon getragen hatte. „Dieses Loch hat Ghiberti später gefüllt“, sagt Prof. Giuseppe Gorini vom physikalischen Institut der Universität Mailand-Bicocca, der das europäische Forschungsprojekt Ancient Charm leitet.

Seine Kollegin Prof. Carla Andreani von der Universität Rom ist begeistert von den Möglichkeiten, die die Neutronenanalyse bietet: „Das zeigt uns, dass die Anwendung von Neutronen einzigartige Informationen liefert. Sie helfen zu verstehen, wie die Figuren gefertigt wurden und wie wir sie am besten erhalten.“ Ziel des Projekts Ancient Charm ist es nun, weitere Methoden zu etablieren, um noch mehr kulturell wertvolle Stücke zerstörungsfrei mit Neutronen untersuchen zu können.

Bildmaterial (zur freien Verwendung unter Angabe des Copyrights):
http://mediatum2.ub.tum.de/?cunfold=807090&dir=807090&id=807090
Links:
EU-Projekt Ancient Charm: http://ancient-charm.neutron-eu.net/ach
Instrument PGAA: http://www.frm2.tum.de/wissenschaft/bestrahlung/pgaa/index.html
Instrument ANTARES: http://www.frm2.tum.de/wissenschaft/radiographie/antares/index.html
Kontakt:

Dipl. Phys. Ralf Schulze
Institut für Kernphysik - Universität zu Köln
Zülpicher Str. 77
50937 Köln
E-Mail: Ralf.Schulze@ikp.uni-koeln.de
Tel: +49 221 470 3649 und +49 89 289 14765

Andrea Voit
Pressereferentin
Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II)
Technische Universität München
Lichtenbergstr. 1
85748 Garching
Email: andrea.voit@frm2.tum.de
Tel: +49 89 289 12141

Andrea Voit | Technische Universität München
Weitere Informationen:
http://www.tum.de

Weitere Nachrichten aus der Kategorie Interdisziplinäre Forschung:

nachricht Speiseröhrenkrebs einfacher erkennen
06.03.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Neues Labor für die Aufbautechnik von ultradünnen Mikrosystemen
21.02.2017 | Hahn-Schickard

Alle Nachrichten aus der Kategorie: Interdisziplinäre Forschung >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Physiker erzeugen gezielt Elektronenwirbel

Einem Team um den Oldenburger Experimentalphysiker Prof. Dr. Matthias Wollenhaupt ist es mithilfe ultrakurzer Laserpulse gelungen, gezielt Elektronenwirbel zu erzeugen und diese dreidimensional abzubilden. Damit haben sie einen komplexen physikalischen Vorgang steuern können: die sogenannte Photoionisation oder Ladungstrennung. Diese gilt als entscheidender Schritt bei der Umwandlung von Licht in elektrischen Strom, beispielsweise in Solarzellen. Die Ergebnisse ihrer experimentellen Arbeit haben die Grundlagenforscher kürzlich in der renommierten Fachzeitschrift „Physical Review Letters“ veröffentlicht.

Das Umwandeln von Licht in elektrischen Strom ist ein ultraschneller Vorgang, dessen Details erstmals Albert Einstein in seinen Studien zum photoelektrischen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

Unter der Haut

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungsnachrichten

Neues Schiff für die Fischerei- und Meeresforschung

22.03.2017 | Biowissenschaften Chemie

Mit voller Kraft auf Erregerjagd

22.03.2017 | Biowissenschaften Chemie