Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Prophet unter der Neutronenlupe

20.08.2009
Florenzer Kunstobjekt wird am FRM II der TU München untersucht

Kunstgeschichte und Physik haben auf den ersten Blick nicht viel gemeinsam. Beim europäischen Forschungsprojekt Ancient Charm gehen die beiden Disziplinen jedoch eine enge Zusammenarbeit ein.

So werden an der Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II) der Technischen Universität München (TUM) historisch wertvolle Gegenstände mit Neutronen analysiert.

Mit Hilfe von Neutronen untersuchen die Physiker, Archäologen und Restauratoren am FRM II in Garching zerstörungsfrei, wie die Objekte gefertigt wurden und mit welchen Methoden man sie am besten restauriert.

Hunderte Touristen bestaunen täglich die bronzene Paradiespforte des Baptisteriums San Giovanni in Florenz. Der Renaissance-Bildhauer Lorenzo Ghiberti zeigt in seinem Meisterwerk aus den Jahren 1425 bis 1442 Szenen aus dem Alten Testament, umrahmt von Propheten- und Evangelistenköpfen.

Einen dieser Bronzeköpfe des Florenzer Kunstwerks haben jetzt die die Physiker Lea Canella (TUM) und Ralf Schulze (Universität zu Köln) am Instrument PGAA (Prompte Gamma Aktivierungsanalyse) am FRM II mit Neutronen untersucht. „Nur der anwesende Museumskurator durfte den mehrere Millionen Euro teuren Kopf bewegen“, erzählt Ralf Schulze. „Wir mussten darauf achten, dass er rund um die Uhr sicher verstaut war. Wenn sie nicht untersucht wurde, war die Bronzeplastik in einem Tresor verschlossen.“

Restauratoren aus Florenz hatten an dem Prophetenkopf zwei verschiedene Reinigungs-Methoden ausprobiert: Einen Teil der von den Jahren geschwärzten Bronzeoberfläche reinigten sie mit Laser, einen anderen Teil chemisch mit Salzen und ein dritter Teil des Kopfes blieb ungereinigt. Die Neutronenanalyse im Rahmen des EU-Projekts „Ancient Charm“ sollte ihnen zerstörungsfrei zeigen, welche Reinigungs-Methode die beste ist.

Bei der Untersuchung am FRM II lenkten die Physiker Canella und Schulz die Neutronen so auf die jeweilige Stelle des Bronzestücks, dass sie das Metall nur leicht an der Oberfläche streiften. Durch vertikales Verschieben des Kopfes drang der Neutronenstrahl unterschiedlich tief in das Material ein. Beim Zusammenstoß mit den Neutronen gaben die verschiedenen Materialien in dem Prophetenkopf ein charakteristisches Muster an Gammastrahlen ab. Diese ausfallenden Strahlen maßen die Physiker an ihrem wissenschaftlichen Gerät, sodass sie Rückschlüsse auf die Materialzusammensetzung an der bestimmten Stelle ziehen konnten.

Neutronen dringen dabei weitaus tiefer in die Bronze ein als es etwa Röntgenstrahlen vermögen. „Für derartige Messungen an wertvollen Objekten ist eine hohe Intensität mit an einem Punkt fokussierten Neutronen erforderlich“, erklärt die verantwortliche Wissenschaftlerin am Gerät PGAA, Dr. Petra Kudejova, die für die Universität zu Köln am FRM II forscht. „Diese Möglichkeit haben wir nur an der Forschungs-Neutronenquelle in Garching.“

Im Fall der Bronzeköpfe vom Florenzer Paradiestor stellte sich bei der Analyse mit Neutronen heraus, dass die chemische Restaurierungsmethode die effizientere ist. Auf der derart gereinigten Oberfläche fanden die Physiker nämlich mit ihrer Neutronenanalyse weniger Rückstände des Elements Chlor, welches Bestandteil der schwarzen Ablagerungen ist. So wissen die Restauratoren nun, wie sie die wertvollen Ghiberti-Plastiken reinigen können.

Ein anderes interessantes Ergebnis für die Kunstgeschichte lieferte eine zweite Untersuchung des Bronzekopfs mit Neutronen am Instrument ANTARES (Advanced Neutron Tomography and Radiography Experimental System) am FRM II. Hier wurde statt der Oberfläche die komplette Plastik aus Bronze mit Neutronen durchleuchtet. Auf dem so entstandenen Bild - der Radiographie - wurde sichtbar, dass der Kopf offenbar beim ersten Guss vor fast 600 Jahren ein Loch davon getragen hatte. „Dieses Loch hat Ghiberti später gefüllt“, sagt Prof. Giuseppe Gorini vom physikalischen Institut der Universität Mailand-Bicocca, der das europäische Forschungsprojekt Ancient Charm leitet.

Seine Kollegin Prof. Carla Andreani von der Universität Rom ist begeistert von den Möglichkeiten, die die Neutronenanalyse bietet: „Das zeigt uns, dass die Anwendung von Neutronen einzigartige Informationen liefert. Sie helfen zu verstehen, wie die Figuren gefertigt wurden und wie wir sie am besten erhalten.“ Ziel des Projekts Ancient Charm ist es nun, weitere Methoden zu etablieren, um noch mehr kulturell wertvolle Stücke zerstörungsfrei mit Neutronen untersuchen zu können.

Bildmaterial (zur freien Verwendung unter Angabe des Copyrights):
http://mediatum2.ub.tum.de/?cunfold=807090&dir=807090&id=807090
Links:
EU-Projekt Ancient Charm: http://ancient-charm.neutron-eu.net/ach
Instrument PGAA: http://www.frm2.tum.de/wissenschaft/bestrahlung/pgaa/index.html
Instrument ANTARES: http://www.frm2.tum.de/wissenschaft/radiographie/antares/index.html
Kontakt:

Dipl. Phys. Ralf Schulze
Institut für Kernphysik - Universität zu Köln
Zülpicher Str. 77
50937 Köln
E-Mail: Ralf.Schulze@ikp.uni-koeln.de
Tel: +49 221 470 3649 und +49 89 289 14765

Andrea Voit
Pressereferentin
Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II)
Technische Universität München
Lichtenbergstr. 1
85748 Garching
Email: andrea.voit@frm2.tum.de
Tel: +49 89 289 12141

Andrea Voit | Technische Universität München
Weitere Informationen:
http://www.tum.de

Weitere Nachrichten aus der Kategorie Interdisziplinäre Forschung:

nachricht Innovation: Optische Technologien verändern die Welt
01.12.2016 | Karlsruher Institut für Technologie

nachricht SeaArt-Projekt startet mit Feldversuchen an Nord- und Ostsee
18.11.2016 | Hochschule Hannover

Alle Nachrichten aus der Kategorie: Interdisziplinäre Forschung >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie