Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Was Pilze in Ökosystemen leisten

13.02.2012
Mit einem neuen ‚EcoChip’ können Bayreuther Biologen von Umweltproben auf Artenvielfalt und Funktionen in Ökosystemen schließen

Pilze spielen in fast allen Ökosystemen, wie Wälder oder Ackerböden, eine zentrale Rolle. Sie zersetzen dort etwa 90 Prozent der Biomasse abgestorbener Organismen und speisen sie dadurch wieder in den Stoffkreislauf ein.

In einem Ökosystem übernehmen verschiedene Pilzarten jeweils besondere Aufgaben und stehen auch untereinander in Wechselwirkung. Diese Leistungen in voller Breite zu analysieren, war bislang nicht möglich, weil die vorhandenen Technologien nicht ausreichten. Doch ein so genannter ‚EcoChip’, den Wissenschaftler an der Universität Bayreuth entwickelt haben, versetzt die Forscher jetzt in die Lage, den ökosystemaren Funktionen von Pilzarten genauer auf die Spur zu kommen.

In der aktuellen Ausgabe der Zeitschrift „Microarrays“ stellt das Forschungsteam um Prof. Dr. Gerhard Rambold, der die Abteilung für Mykologie am Fachbereich Biologie leitet, den Prototyp vor.

Der neue EcoChip macht es möglich, beispielsweise Boden- und Pflanzenproben mit einer bisher unerreichten Genauigkeit auf die darin vorkommenden Pilzarten zu analysieren. Entscheidend ist, dass es sich um Nukleinsäureproben handelt. Diese werden mit Farbstoffen markiert und mit der Oberfläche des EcoChips in Kontakt gebracht. Aufgrund von Signalen, die dabei entstehen, lässt sich zunächst einmal mit hoher Treffsicherheit ermitteln, welche Pilzarten in der Probe vorhanden waren. Schon dies ist ein großer Fortschritt angesichts der Tatsache, dass aktuell rund 46.000 Pilzarten bekannt sind, aber mehr als 1,5 Millionen Pilzarten weltweit vermutet werden. Zugleich eröffnet der EcoChip aus Bayreuth die Möglichkeit, präzise Einblicke in die besonderen Leistungen der Pilzgemeinschaft zu gewinnen.

Damit ist es gelungen, das Potenzial der bekannten Chip-Technologie so zu erweitern, dass sie neue Anwendungen in der Ökosystemforschung ermöglicht. Die Innovation liegt darin, dass die Bayreuther Wissenschaftler in einer entscheidenden Hinsicht vom Design derjenigen Chips abgewichen sind, die in der Genforschung bislang verwendet werden. Der EcoChip analysiert nämlich nicht die DNA, in der die Erbinformationen eines Organismus gespeichert sind. Stattdessen unterstützt er die Entschlüsselung des Transkriptoms. So wird in der Forschung die im Organismus enthaltene RNA bezeichnet, die dadurch entsteht, dass Abschnitte der DNA umgeschrieben werden. Die RNA steuert die Bereitstellung von Proteinen, die spezifische Funktionen im Organismus und in seiner Umwelt übernehmen. Weil der Bayreuther EcoChip für RNA-Analysen ausgelegt ist, versetzt er die Wissenschaftler nicht nur in die Lage, die in den Proben enthaltenen aktiven Pilzarten ausfindig zu machen. Er gibt gleichzeitig darüber Auskunft, welche Funktionen diese Pilzarten in ihrer Umwelt haben – beispielsweise im Zusammenhang mit dem Biomassekreislauf eines Ökosystems. Auch die Dynamik dieser Funktionen tritt erst dann deutlich zutage, wenn die Chip-Technologie für die Untersuchung des Transkriptoms eingesetzt wird.

Die Forschungsideen der Bayreuther Wissenschaftler eröffnen damit den Weg für eine neue Generation von Microarrays, die nicht allein die Pilzforschung, sondern auch die Ökosystemforschung voranbringen können. Denn die Chip-Herstellung hat sich, dank neuer Produktionsverfahren, enorm verbilligt. So können heute auf einem wenige Quadratzentimeter großen Chip Hunderttausende von Minisonden platziert werden. Diese sind darauf spezialisiert, bestimmte Abschnitte des Transkriptoms und die darin begründeten Funktionen zu identifizieren. Zudem ist das Preis-Leistungs-Verhältnis beim Bayreuther EcoChip sehr viel günstiger als bei der Hochdurchsatz-Sequenzierung. Dieses Verfahren wird seit kurzem in der genetischen Diagnostik mit großem Erfolg eingesetzt, aber ist für breiter angelegte molekularökologische Studien derzeit noch viel zu teuer.

Das Labor für DNA-Analytik und Ökoinformatik des Fachbereichs Biologie der Universität Bayreuth verfügt über die notwendige technische Ausstattung, um EcoChips maßgeschneidertfür verschiedene Forschungsvorhaben zu entwerfen. Da die Fertigungszeit und die anschließende Analyse nur wenige Wochen dauert, können selbst umfangreiche Projekte in verhältnismäßig kurzer Zeit abgeschlossen werden.

Veröffentlichung:

Derek Peršoh, Alfons R. Weig and Gerhard Rambold,
A Transcriptome-Targeting EcoChip for Assessing Functional Mycodiversity,
in: Microarrays 2012, 1(1), pp. 25-41
DOI-Bookmark: 10.3390/microarrays1010025
Kontaktadressen für weitere Informationen:
Dr. Alfons R. Weig
DNA-Analytik & Ökoinformatik
Universität Bayreuth
D-95440 Bayreuth
Tel.: +49 (0)921 55 2457
E-Mail: a.weig@uni-bayreuth.de

Christian Wißler | Universität Bayreuth
Weitere Informationen:
http://www.uni-bayreuth.de
http://www.uni-bayreuth.de/blick-in-die-forschung/05-2012-Bilder/

Weitere Nachrichten aus der Kategorie Interdisziplinäre Forschung:

nachricht Speiseröhrenkrebs einfacher erkennen
06.03.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Neues Labor für die Aufbautechnik von ultradünnen Mikrosystemen
21.02.2017 | Hahn-Schickard

Alle Nachrichten aus der Kategorie: Interdisziplinäre Forschung >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Von Agenten, Algorithmen und unbeliebten Wochentagen

28.03.2017 | Unternehmensmeldung

Hannover Messe: Elektrische Maschinen in neuen Dimensionen

28.03.2017 | HANNOVER MESSE

Dimethylfumarat – eine neue Behandlungsoption für Lymphome

28.03.2017 | Medizin Gesundheit