Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Photovoltaik aus selbstorganisierenden supramolekularen Netzwerken

02.03.2016

Organische Photovoltaik wird von vielen als Einstieg in eine kostengünstigere Stromerzeugung angesehen. Eine der noch zu lösenden Herausforderungen ist die geringe Ordnung der dünnen Schichten auf den Elektroden. Einen neuen Ansatz präsentiert nun ein Team von Wissenschaftlern der Technischen Universität München (TUM): Auf Graphenoberflächen bauten sie photoaktive Schichten aus sich selbst organisierenden molekularen Netzwerken. Ihre Forschungsergebnisse eröffnen interessante, neue Möglichkeiten, opto-elektronische Bauelemente molekülgenau herzustellen.

Unübertroffen beherrscht es die Natur, sich selbst organisierende, komplexe, molekulare Maschinerie aufzubauen. Diese kann Licht absorbieren und damit Ladungen trennen und Elektronen übertragen. Nanotechnologen träumen schon lange davon, diese biomolekularen Strukturen nachzuahmen und sie für eine kostengünstige Stromproduktion zu nutzen.


Rastertunnelmikroskopisches Bild des Netzwerks aus mit Melamin verknüpften Terrylendiimidmolekülen; rechts eingeblendet: Modell der atomaren Struktur

Bild: C. A. Palma / TUM

Forscher der Fakultäten für Physik und für Chemie der TU München, des Max-Planck-Instituts für Polymerforschung (MPI-P) und der Université de Strasbourg (UdS) haben nun Farbstoffmoleküle so modifiziert, dass sie als Bausteine für selbstorganisierende molekulare Netzwerke einsetzbar sind.

Auf der atomar glatten Oberfläche einer Graphenschicht auf Diamant formen die Moleküle die Zielarchitektur von selbst, ähnlich wie bei Proteinen oder in der DNA-Nanotechnologie. Die einzige treibende Kraft sind dabei die eingebauten, supramolekularen Wechselwirkungen auf der Basis von Wasserstoffbrücken. Wie erwartet produzierten die fertigen Netzwerke bei Belichtung Strom.

Von der Kunst zur Anwendung

„Lange Zeit galten die selbstorganisierenden molekularen Architekturen eher als Kunst,“ sagt PD Dr. Friedrich Esch, einer der Autoren der Arbeit. „Mit dieser Publikation präsentieren wir zum ersten Mal eine ernsthafte praktische Anwendung dieser Technologie.“

„Für die herkömmliche organischen Photovoltaik ist die Verbesserung der molekularen Ordnung noch immer eine Herausforderung. Der Nanotechnologie-Werkzeugkasten bietet uns dagegen die Möglichkeit, die Anordnung der Bausteine der Schicht atomgenau vorherzubestimmen,“ sagt Dr. Carlos-Andres Palma, der die Experimente mit betreute. „Über die physikalisch-chemische Steuerung der Komponenten haben wir weitere Stellschrauben für die Funktionsoptimierung.“

Die Wissenschaftler arbeiten nun daran, auch größere Flächen beschichten zu können und die photovoltaischen Eigenschaften unter Standardbedingungen zu reproduzieren. „Von selbstorganisierenden Schichten mit Farbstoffen, eingelagert zwischen zweidimensionalen Graphen-Elektroden, versprechen wir uns eine einfache Maßstabsvergrößerung, hin zu effizienten Photovoltaik-Elementen,“ sagt Dr. Palma. „Unsere Schichten werden damit zu einer Option für die Solar-Technologie.“

Perfektes Zusammenspiel von Chemie und Physik

Als photoaktives Farbstoffmolekül dient den Wissenschaftler Terrylen-Diimid. Das dreibindige Melamin verknüpft die lang gestreckten Diimid-Moleküle zu Netzwerken. Welche Architekturen daraus genau entstehen, legen die Chemiker durch die zuvor eingefügten Seitengruppen des Terrylen-Diimids fest.

„Diese Arbeit ist ein hervorragendes Beispiel für die interdisziplinäre Zusammenarbeit, wie wir sie mit der Einrichtung des Katalyseforschungszentrums beabsichtigt haben, ein perfektes Zusammenspiel von Chemie und Physik“ sagt Professor Ulrich Heiz, der Direktor des Zentralinstituts für Katalyseforschung der TU München.

Die Forschung wurde gefördert mit Mitteln des European Research Council (ERC Grants MolArt und Suprafunktion sowie Graphene Flagship-Projekt), der Deutschen Forschungsgemeinschaft (DFG) über die Exzellenzcluster Nanosystems Initiative Munich (NIM) und Munich-Centre for Advanced Photonics (MAP), des China Scholarship Council sowie der französischen Agence Nationale de la Recherche und des International Center for Frontier Research in Chemistry (icFRC).

Publikation:

Photoresponse of supramolecular self-assembled networks on graphene–diamond interfaces
Sarah Wieghold, Juan Li, Patrick Simon, Maximilian Krause, Yuri Avlasevich, Chen Li, Jose A. Garrido, Ueli Heiz, Paolo Samori, Klaus Müllen, Friedrich Esch, Johannes V. Barth, Carlos-Andres Palma
nature communications, 25.02.2016, DOI: 10.1038/ncomms10700

Kontakt:

Prof. Dr. Johannes V. Barth
Technische Universität München
Physik-Department (E20)
James Franck Str. 1, 85748 Garching, Germany
Tel.: +49 89 289 12608 – E-Mail: e20office@ph.tum.de

Weitere Informationen:

http://www.nature.com/ncomms/2016/160225/ncomms10700/abs/ncomms10700.html
http://www.e20.ph.tum.de

Dr. Ulrich Marsch | Technische Universität München

Weitere Nachrichten aus der Kategorie Interdisziplinäre Forschung:

nachricht ROBOLAB generiert neue Forschungsansätze und Kooperationen
08.05.2017 | Hochschule Mainz

nachricht Wie Coronaviren Zellen umprogrammieren
28.04.2017 | Justus-Liebig-Universität Gießen

Alle Nachrichten aus der Kategorie: Interdisziplinäre Forschung >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

Staphylococcus aureus ist aufgrund häufiger Resistenzen gegenüber vielen Antibiotika ein gefürchteter Erreger (MRSA) insbesondere bei Krankenhaus-Infektionen. Forscher des Paul-Ehrlich-Instituts haben immunologische Prozesse identifiziert, die eine erfolgreiche körpereigene, gegen den Erreger gerichtete Abwehr verhindern. Die Forscher konnten zeigen, dass sich durch Übertragung von Protein oder Boten-RNA (mRNA, messenger RNA) des Erregers auf Immunzellen die Immunantwort in Richtung einer aktiven Erregerabwehr verschieben lässt. Dies könnte für die Entwicklung eines wirksamen Impfstoffs bedeutsam sein. Darüber berichtet PLOS Pathogens in seiner Online-Ausgabe vom 25.05.2017.

Staphylococcus aureus (S. aureus) ist ein Bakterium, das bei weit über der Hälfte der Erwachsenen Haut und Schleimhäute besiedelt und dabei normalerweise keine...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

DFG fördert 15 neue Sonderforschungsbereiche (SFB)

26.05.2017 | Förderungen Preise

Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

26.05.2017 | Biowissenschaften Chemie

Unglaublich formbar: Lesen lernen krempelt Gehirn selbst bei Erwachsenen tiefgreifend um

26.05.2017 | Gesellschaftswissenschaften