Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Operieren ohne Skalpell

25.03.2011
Haut, Muskeln, Nerven und selbst Knochen: Messerscharf und äußerst präzise kann der Chirurg bei einer Operation mit einem Laser jedes Gewebe durchtrennen, ohne den Patienten auch nur zu berühren.

Wie tief der Laser in das Gewebe eindringt und was er zerschneidet, kann der Arzt allerdings nicht kontrollieren und muss somit häufig auf dessen Einsatz verzichten. Ein interdisziplinäres Team aus Ärzten, Ingenieuren, Mathematikern und Physikern der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) forscht daher gemeinsam nach einer Möglichkeit, den Laser besser steuern zu können.

Das Projekt trägt den Titel „Tissue specific laser surgery“ und wird von der Deutschen Forschungsgemeinschaft (DFG) gefördert. Über einen Zeitraum von zunächst eineinhalb Jahren fließen rund 140.000 Euro an die Projektpartner.

An dem Forschungsvorhaben beteiligt sind FAU-Wissenschaftler der Mund-, Kiefer- und Gesichtschirurgischen Klinik des Universitätsklinikums Erlangen und Wissenschaftler des Bayerischen Laserzentrums (BLZ). Zudem wird das Projekt durch eine enge Kooperation mit der Graduate School of Advanced Optical Technologies (SAOT) und dem Institut für Medizininformatik, Biometrie und Epidemiologie unterstützt.

Die Idee der Forscher
„Unser Ziel ist, einen optischen Feedbackmechanismus zu entwickeln, der dem Arzt mitteilt, welche Gewebeschichten der Laser durchtrennt“, erläutert Dr. Florian Stelzle von der Mund-, Kiefer- und Gesichtschirurgischen Klinik, der das Projekt gemeinsam mit Prof. Dr. Michael Schmidt leitet, dem Inhaber des Lehrstuhls für Photonische Technologien an der FAU und zugleich Vorsitzenden des BLZ. Dazu wollen die Wissenschaftler zwei optische Systeme einsetzen, die bei einer Operation parallel arbeiten: Während der Laser Gewebe schneidet, macht er immer wieder kurze Pausen. Diese Pausen nutzt eines der optischen Systeme, um per diffus reflektierten Lichtes und Fluoreszenz zu ermitteln, welches Gewebe der Laser unmittelbar als nächstes durchtrennen wird. Das andere optische System analysiert die beim Laserabtrag entstehende Plasma- und Partikelwolke, um zu erkennen, welches Gewebe unmittelbar zuvor durchtrennt wurde. Diese Doppelstrategie soll sicherstellen, dass die Chirurgen ausschließlich das geplante Gewebe durchtrennen und umliegendes Gewebe nicht durch zu tiefe oder an falscher Stelle eingesetzte Laser-Schnitte irreparabel verletzen.
Die Umsetzung
Bis zur praktischen Anwendung ist es ein weiter Weg. „Als erstes müssen wir ermitteln, ob es mit optischen Methoden überhaupt möglich ist, verschiedene Gewebearten voneinander zu unterscheiden“, sagt Dr. Florian Stelzle. Hier sind die Forscher große Schritte vorangekommen. Bei der Untersuchung von gesundem Gewebe haben sie festgestellt, dass beispielsweise Nervengewebe Licht auf andere Weise reflektiert und ein anderes Fluoreszenzspektrum aufweist als Muskel- oder Fettgewebe. Das heißt, dass bei unverändertem Gewebe die Gewebe-Erkennung mit einem optischen System funktioniert. Anders könnte es bei Gewebe sein, das bereits mit einem Laser bearbeitet wurde. „Durch die hohe Energie, die der Laser überträgt, verändern sich die optischen Eigenschaften der Gewebe. Wir müssen also ermitteln, ob auch in diesem Fall die einzelnen Gewebearten noch für das optische System zu unterscheiden sind“, sagt Stelzle. Ist das geschehen, kann dieses System schon einmal arbeiten und eine Aussage darüber treffen, welches Gewebe der Laser als nächstes durchtrennen wird.

Das andere optische System soll die Plasma- und Partikelwolke untersuchen, die beim Laserabtrag entsteht. „Genauer gesagt, liefert das System nur Bilder der Abtragswolke. Diese Bilder werden dann binnen Sekundenbruchteilen von einem Computer auf ihre optischen Bestandteile hin analysiert“, erläutert Dr. Florian Stelzle. Die Wissenschaftler planen, unterschiedlichste Gewebearten, z.B. Muskel-, Nerven- und Fettgewebe aber auch Knorpel und Knochen mit dem Laser abzutragen und alle Daten über die dabei entstehenden optischen Erscheinungen zu sammeln, um diese Muster im PC zu speichern. So wird eine Art optische Bibliothek der Gewebe entstehen. Während der Operation kann der Computer dann die gespeicherten Informationen abrufen und analysieren, welches Gewebe als letztes durchtrennt wurde.

Die Zukunftsvision der Forscher sei, sagt Stelzle, ein Lasersystem zu entwickeln, das mit Hilfe des optischen Feedbacksystems – binnen der kurzen Pausen beim Lasern – alle Infos abrufen kann, um den Laservorgang hoch präzise zu steuern: „Die Idee ist, z.B. den Unterkieferknochen mit dem Laser zu durchtrennen und dabei gleichzeitig den Nerven, der in diesem Knochen verläuft, nicht zu tangieren.“

Die Universität Erlangen-Nürnberg, gegründet 1743, ist mit 29.000 Studierenden, 590 Professorinnen und Professoren sowie 2000 wissenschaftlichen Mitarbeiterinnen und Mitarbeitern die größte Universität in Nordbayern. Schwerpunkte in Forschung und Lehre liegen an den Schnittstellen von Naturwissenschaften, Technik und Medizin in engem Dialog mit Jura und Theologie sowie den Geistes-, Sozial- und Wirtschaftswissenschaften. Seit Mai 2008 trägt die Universität das Siegel „familiengerechte Hochschule“.

Mehr Informationen:
Dr. Florian Stelzle
Universitätsklinikum Erlangen
Tel.: 09131/85-34201
Florian.Stelzle@uk-erlangen.de
Prof. Dr. Michael Schmidt
Lehrstuhl für Photonische Technologien
Tel.: 09131/85-23241
michael.schmidt@lpt.uni-erlangen.de

Pascale Anja Dannenberg | idw
Weitere Informationen:
http://www.uk-erlangen.de
http://www.aot.uni-erlangen.de/SAOT/glance/

Weitere Nachrichten aus der Kategorie Interdisziplinäre Forschung:

nachricht Bionik-Forschungsvorhaben untersucht mechanische Eigenschaften von Außenskeletten
26.03.2018 | Hochschule Bremen

nachricht Winzige Zell-Implantate funktionieren auch in vivo
19.03.2018 | Universität Basel

Alle Nachrichten aus der Kategorie: Interdisziplinäre Forschung >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gammastrahlungsblitze aus Plasmafäden

Neuartige hocheffiziente und brillante Quelle für Gammastrahlung: Anhand von Modellrechnungen haben Physiker des Heidelberger MPI für Kernphysik eine neue Methode für eine effiziente und brillante Gammastrahlungsquelle vorgeschlagen. Ein gigantischer Gammastrahlungsblitz wird hier durch die Wechselwirkung eines dichten ultra-relativistischen Elektronenstrahls mit einem dünnen leitenden Festkörper erzeugt. Die reichliche Produktion energetischer Gammastrahlen beruht auf der Aufspaltung des Elektronenstrahls in einzelne Filamente, während dieser den Festkörper durchquert. Die erreichbare Energie und Intensität der Gammastrahlung eröffnet neue und fundamentale Experimente in der Kernphysik.

Die typische Wellenlänge des Lichtes, die mit einem Objekt des Mikrokosmos wechselwirkt, ist umso kürzer, je kleiner dieses Objekt ist. Für Atome reicht dies...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Wie schwingt ein Molekül, wenn es berührt wird?

Physiker aus Regensburg, Kanazawa und Kalmar untersuchen Einfluss eines äußeren Kraftfeldes

Physiker der Universität Regensburg (Deutschland), der Kanazawa University (Japan) und der Linnaeus University in Kalmar (Schweden) haben den Einfluss eines...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Nachhaltige und innovative Lösungen

19.04.2018 | HANNOVER MESSE

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungsnachrichten

Auf dem Weg zur optischen Kernuhr

19.04.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics