Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Operieren ohne Skalpell

25.03.2011
Haut, Muskeln, Nerven und selbst Knochen: Messerscharf und äußerst präzise kann der Chirurg bei einer Operation mit einem Laser jedes Gewebe durchtrennen, ohne den Patienten auch nur zu berühren.

Wie tief der Laser in das Gewebe eindringt und was er zerschneidet, kann der Arzt allerdings nicht kontrollieren und muss somit häufig auf dessen Einsatz verzichten. Ein interdisziplinäres Team aus Ärzten, Ingenieuren, Mathematikern und Physikern der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) forscht daher gemeinsam nach einer Möglichkeit, den Laser besser steuern zu können.

Das Projekt trägt den Titel „Tissue specific laser surgery“ und wird von der Deutschen Forschungsgemeinschaft (DFG) gefördert. Über einen Zeitraum von zunächst eineinhalb Jahren fließen rund 140.000 Euro an die Projektpartner.

An dem Forschungsvorhaben beteiligt sind FAU-Wissenschaftler der Mund-, Kiefer- und Gesichtschirurgischen Klinik des Universitätsklinikums Erlangen und Wissenschaftler des Bayerischen Laserzentrums (BLZ). Zudem wird das Projekt durch eine enge Kooperation mit der Graduate School of Advanced Optical Technologies (SAOT) und dem Institut für Medizininformatik, Biometrie und Epidemiologie unterstützt.

Die Idee der Forscher
„Unser Ziel ist, einen optischen Feedbackmechanismus zu entwickeln, der dem Arzt mitteilt, welche Gewebeschichten der Laser durchtrennt“, erläutert Dr. Florian Stelzle von der Mund-, Kiefer- und Gesichtschirurgischen Klinik, der das Projekt gemeinsam mit Prof. Dr. Michael Schmidt leitet, dem Inhaber des Lehrstuhls für Photonische Technologien an der FAU und zugleich Vorsitzenden des BLZ. Dazu wollen die Wissenschaftler zwei optische Systeme einsetzen, die bei einer Operation parallel arbeiten: Während der Laser Gewebe schneidet, macht er immer wieder kurze Pausen. Diese Pausen nutzt eines der optischen Systeme, um per diffus reflektierten Lichtes und Fluoreszenz zu ermitteln, welches Gewebe der Laser unmittelbar als nächstes durchtrennen wird. Das andere optische System analysiert die beim Laserabtrag entstehende Plasma- und Partikelwolke, um zu erkennen, welches Gewebe unmittelbar zuvor durchtrennt wurde. Diese Doppelstrategie soll sicherstellen, dass die Chirurgen ausschließlich das geplante Gewebe durchtrennen und umliegendes Gewebe nicht durch zu tiefe oder an falscher Stelle eingesetzte Laser-Schnitte irreparabel verletzen.
Die Umsetzung
Bis zur praktischen Anwendung ist es ein weiter Weg. „Als erstes müssen wir ermitteln, ob es mit optischen Methoden überhaupt möglich ist, verschiedene Gewebearten voneinander zu unterscheiden“, sagt Dr. Florian Stelzle. Hier sind die Forscher große Schritte vorangekommen. Bei der Untersuchung von gesundem Gewebe haben sie festgestellt, dass beispielsweise Nervengewebe Licht auf andere Weise reflektiert und ein anderes Fluoreszenzspektrum aufweist als Muskel- oder Fettgewebe. Das heißt, dass bei unverändertem Gewebe die Gewebe-Erkennung mit einem optischen System funktioniert. Anders könnte es bei Gewebe sein, das bereits mit einem Laser bearbeitet wurde. „Durch die hohe Energie, die der Laser überträgt, verändern sich die optischen Eigenschaften der Gewebe. Wir müssen also ermitteln, ob auch in diesem Fall die einzelnen Gewebearten noch für das optische System zu unterscheiden sind“, sagt Stelzle. Ist das geschehen, kann dieses System schon einmal arbeiten und eine Aussage darüber treffen, welches Gewebe der Laser als nächstes durchtrennen wird.

Das andere optische System soll die Plasma- und Partikelwolke untersuchen, die beim Laserabtrag entsteht. „Genauer gesagt, liefert das System nur Bilder der Abtragswolke. Diese Bilder werden dann binnen Sekundenbruchteilen von einem Computer auf ihre optischen Bestandteile hin analysiert“, erläutert Dr. Florian Stelzle. Die Wissenschaftler planen, unterschiedlichste Gewebearten, z.B. Muskel-, Nerven- und Fettgewebe aber auch Knorpel und Knochen mit dem Laser abzutragen und alle Daten über die dabei entstehenden optischen Erscheinungen zu sammeln, um diese Muster im PC zu speichern. So wird eine Art optische Bibliothek der Gewebe entstehen. Während der Operation kann der Computer dann die gespeicherten Informationen abrufen und analysieren, welches Gewebe als letztes durchtrennt wurde.

Die Zukunftsvision der Forscher sei, sagt Stelzle, ein Lasersystem zu entwickeln, das mit Hilfe des optischen Feedbacksystems – binnen der kurzen Pausen beim Lasern – alle Infos abrufen kann, um den Laservorgang hoch präzise zu steuern: „Die Idee ist, z.B. den Unterkieferknochen mit dem Laser zu durchtrennen und dabei gleichzeitig den Nerven, der in diesem Knochen verläuft, nicht zu tangieren.“

Die Universität Erlangen-Nürnberg, gegründet 1743, ist mit 29.000 Studierenden, 590 Professorinnen und Professoren sowie 2000 wissenschaftlichen Mitarbeiterinnen und Mitarbeitern die größte Universität in Nordbayern. Schwerpunkte in Forschung und Lehre liegen an den Schnittstellen von Naturwissenschaften, Technik und Medizin in engem Dialog mit Jura und Theologie sowie den Geistes-, Sozial- und Wirtschaftswissenschaften. Seit Mai 2008 trägt die Universität das Siegel „familiengerechte Hochschule“.

Mehr Informationen:
Dr. Florian Stelzle
Universitätsklinikum Erlangen
Tel.: 09131/85-34201
Florian.Stelzle@uk-erlangen.de
Prof. Dr. Michael Schmidt
Lehrstuhl für Photonische Technologien
Tel.: 09131/85-23241
michael.schmidt@lpt.uni-erlangen.de

Pascale Anja Dannenberg | idw
Weitere Informationen:
http://www.uk-erlangen.de
http://www.aot.uni-erlangen.de/SAOT/glance/

Weitere Nachrichten aus der Kategorie Interdisziplinäre Forschung:

nachricht Innovation: Optische Technologien verändern die Welt
01.12.2016 | Karlsruher Institut für Technologie

nachricht SeaArt-Projekt startet mit Feldversuchen an Nord- und Ostsee
18.11.2016 | Hochschule Hannover

Alle Nachrichten aus der Kategorie: Interdisziplinäre Forschung >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Weiterbildung zu statistischen Methoden in der Versuchsplanung und -auswertung

06.12.2016 | Seminare Workshops

Bund fördert Entwicklung sicherer Schnellladetechnik für Hochleistungsbatterien mit 2,5 Millionen

06.12.2016 | Förderungen Preise

Innovationen für eine nachhaltige Forstwirtschaft

06.12.2016 | Agrar- Forstwissenschaften