Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neues Nano-CT-Gerät liefert hochauflösende Aufnahmen von winzigem Stummelfüßer-Bein

07.11.2017

Computertomographie (CT) ist in Krankenhäusern eine Standardprozedur. Für extrem kleine Untersuchungsgegenstände war sie aber bislang nicht geeignet. Im Fachmagazin PNAS beschreibt ein Team der Technischen Universität München (TUM) ein Nano-CT-Gerät, das dreidimensionale Röntgenbilder mit besonders hoher Auflösung liefert. Erste Test-Anwendung: Gemeinsam mit Kollegen der Universität Kassel und des Helmholtz Zentrums Geesthacht haben die Forscherinnen und Forscher den Bewegungsapparat der urtümlichen Stummelfüßer analysiert.

Bei einer CT-Analyse wird der Untersuchungsgegenstand mit Röntgenstrahlen durchleuchtet. Ein Detektor misst aus verschiedenen Winkeln, wieviel Strahlung jeweils absorbiert wird. Aus mehreren solcher Messungen lassen sich dreidimensionale Bilder des Körperinneren errechnen. Bei Objekten, die so klein sind, wie die 0,4 Millimeter langen Beinchen von Stummelfüßern, stieß das Verfahren allerdings bislang an seine Grenzen.


Nano-CT-Aufnahmen eines Stummelfüßer-Beins. Links die Außenansicht, rechts der Blick ins Gewebe mit eingefärbten Muskelfasern.

Müller, Pfeiffer / TUM / reproduced with permission from PNAS


Mithilfe des Nano-CT-Geräts lassen sich sehr kleine Objekte durchleuchten – beispielsweise die Beinchen der Stummelfüßer-Art Euperipatoides rowelli.

de Sena Oliveira / Universität Kassel / reproduced with permission from PNAS

Für hochaufgelöste Aufnahmen wurde Strahlung aus Teilchenbeschleunigern benötigt – Großanlagen, von denen es in ganz Europa nur wenige Dutzend gibt. Ansätze, die für normale Labore geeignet sind, hatten mit niedriger Auflösung zu kämpfen oder die Proben mussten aus bestimmten Materialien sein und durften eine gewisse Größe nicht überschreiten. Der Grund war oft die Verwendung sogenannter Röntgenoptiken. Vereinfacht gesagt bündeln diese den Röntgenstrahl, wie optische Linsen es mit Licht tun – sie sorgen aber auch für verschiedene Einschränkungen.

Hohe Auflösung durch neue Röntgenquelle

Das Nano-CT-System der TUM basiert auf einer neu entwickelten Röntgenquelle, die einen besonders fokussierten Strahl erzeugt, und verzichtet auf Röntgenoptiken. In Kombination mit einem extrem rauscharmen Detektor liefert das Gerät Bilder, die fast die Auflösung eines Rasterelektronenmikroskops erreichen, erfasst aber auch Strukturen unter der Oberfläche.

„Unser System bietet entscheidende Vorteile gegenüber CTs mit Röntgenoptiken“, sagt TUM-Wissenschaftler Mark Müller, Erstautor des Artikels. „Wir können Tomographien von wesentlich größeren Proben durchführen und sind zudem flexibler in Bezug auf die zu untersuchenden Materialien.“

Einblick in die Evolution von Insekten & Co.

Diese Eigenschaften kamen dem Team um Prof. Georg Mayer, Leiter des Fachgebiets Zoologie der Universität Kassel, gelegen. Die Wissenschaftlerinnen und Wissenschaftler erforschen die evolutionäre Entwicklung von Gliederfüßern (Arthropoden), zu denen etwa Insekten, Spinnen und Krebse gehören. Ihr aktueller Forschungsgegenstand sind allerdings die nächsten Verwandten der Arthropoden: die Stummelfüßer (Onychophoren), die man sich grob als Würmer mit Beinen vorstellen kann. Je nach Art werden sie bis zu 20 Zentimeter lang. Wie diese urtümlichen Tiere zoologisch genau einzuordnen sind, ist jedoch nach wie vor umstritten, vermutlich haben die Gliederfüßer und sie gemeinsame Vorfahren.

„Im Gegensatz zu den Arthropoden besitzen Onychophoren ungegliederte Extremitäten, wie sie auch bei Fossilien ihrer mutmaßlichen gemeinsamen Vorfahren zu finden sind“, sagt Georg Mayer. „Um zu klären, wie die gegliederten Extremitäten der Arthropoden entstanden sind, spielt die Untersuchung der funktionellen Anatomie der Beine der Stummelfüßer eine zentrale Rolle.“ Anhand der Nano-CT-Aufnahmen, lassen sich die einzelnen Muskelstränge eines Stummelfüßer-Beinchens untersuchen. Detaillierte Ergebnisse will das Team aus Kassel in den kommenden Monaten veröffentlichen. Sicher ist aber bereits, dass das Nano-CT-Gerät den ersten Praxistest bestanden hat.

Nano-CT: künftige Anwendung in der Medizin

Wie zahlreiche andere Bildgebungsinstrumente wurde das Nano-CT-System an der Munich School of BioEngineering (MSB) entwickelt und installiert. Dieses interdisziplinäre Forschungszentrum der TUM ist europaweit die thematisch umfassendste universitäre Einrichtung für das Schnittfeld von Medizin, Ingenieur- und Naturwissenschaften.
„Unser Ziel bei der Entwicklung des Nano-CT-Systems ist es nicht nur, biologische Proben wie das Stummelfüßer-Bein untersuchen zu können“, sagt Franz Pfeiffer, Professor für Biomedizinische Physik an der TUM, Direktor der MSB und Fellow des TUM Institute for Advanced Study (TUM-IAS).

„In Zukunft sollen mit dieser Technik auch biomedizinische Untersuchungen möglich werden. So könnte man beispielsweise Gewebeproben untersuchen, um zu prüfen, ob es sich bei ihnen um bösartige Tumore handelt. Ein zerstörungsfreier und dreidimensionaler Blick in Gewebe mit einer Auflösung, wie sie die Nano-CT ermöglicht, kann zudem neue Einsichten in die mikroskopische Entstehung von Volkskrankheiten wie Krebs liefern.“

Publikation:

M. Müller, I. de Sena Oliveira, S. Allner, S. Ferstl, P. Bidola, K. Mechlem, A. Fehringer, L. Hehn, M. Dierolf, K. Achterhold, B. Gleich, J. U. Hammel, H. Jahn, G. Mayer, F. Pfeiffer. “Myoanatomy of the velvet worm leg revealed by laboratory-based nanofocus X-ray source tomography”. PNAS (2017). DOI: 10.1073/pnas.1710742114

Publikation:

M. Müller, I. de Sena Oliveira, S. Allner, S. Ferstl, P. Bidola, K. Mechlem, A. Fehringer, L. Hehn, M. Dierolf, K. Achterhold, B. Gleich, J. U. Hammel, H. Jahn, G. Mayer, F. Pfeiffer. “Myoanatomy of the velvet worm leg revealed by laboratory-based nanofocus X-ray source tomography”. PNAS (2017). DOI: 10.1073/pnas.1710742114

Mehr Informationen:

Munich School of BioEngineering
http://www.bioengineering.tum.de/

Lehrstuhl für Biomedizinische Physik
http://www.e17.ph.tum.de

TUM Institute for Advanced Study
https://www.ias.tum.de/

Hochauflösende Bilder
https://mediatum.ub.tum.de/1401200

Kontakt:

Prof. Dr. Franz Pfeiffer
Lehrstuhl für Biomedizinische Physik und Munich School of BioEngineering
Technische Universität München
Tel.: +49 (89) 289 12551
franz.pfeiffer@tum.de

Weitere Informationen:

Video zum Nano-CT-Verfahren (YouTube, ca. 3 Min.)

https://www.youtube.com/watch?time_continue=1&v=fwtzPWdKWqY

Dr. Ulrich Marsch | Technische Universität München

Weitere Nachrichten aus der Kategorie Interdisziplinäre Forschung:

nachricht Mit Nanopartikel-Tandems gegen den Herzinfarkt
01.12.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Virtuelle Realität für Bakterien
01.12.2017 | Institute of Science and Technology Austria

Alle Nachrichten aus der Kategorie: Interdisziplinäre Forschung >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Geminiden 2017: Geheimtipp für Sternschnuppen

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg - Die Geminiden sind der "zuverlässigste" der großen Sternschnuppen-Ströme des Jahres. Sie liefern im Maximum bis zu 100 Sternschnuppen pro Stunde. In diesem Jahr stört der Mond praktisch nicht, der Radiant im Sternbild Zwillinge geht bereits am Abend auf. Die besten Beobachtungsbedingungen gibt es deshalb rund um Mitternacht.

Die Geminiden sind nach dem Sternbild Zwillinge (lat.: Gemini) benannt. Von einem Punkt nahe des hellen Sterns Castor, dem zweithellsten Stern dieses...

Im Focus: Virtuelle Realität für Bakterien

Ein interdisziplinäres Forscherteam hat einzelne Bakterien mit einem Computer verbunden, um einen biologisch-digitalen Hybridschaltkreis herzustellen. Ihre Studie wurde in Nature Communications veröffentlicht.

Wissenschaftlern am Institute of Science and Technology Austria (IST Austria) ist es gelungen, das Verhalten einzelner Bakterien zu kontrollieren, indem sie...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

Im Focus: Ein Raum-Zeit-Fühler für das Licht-Materie-Wechselspiel

Physiker des Labors für Attosekundenphysik der Ludwig-Maximilians-Universität und des Max-Planck-Instituts für Quantenoptik haben ein Attosekunden-schnelles Elektronen-„Mikroskop“ entwickelt. Mit seiner Hilfe lassen sich die Ausbreitung von Licht durch Raum und Zeit sowie die dadurch ausgelösten Bewegungen von Elektronen in Atomen sichtbar machen.

Das elementarste Wechselspiel in der Natur ist das zwischen Licht und Materie. Diese Interaktion geschieht rasend schnell, innerhalb von Attosekunden...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Nachhaltiges Wachstum der Luftfahrt – Wie viel Energiewende ist möglich?

04.12.2017 | Veranstaltungen

Der Mensch hinter dem Algorithmus und die Kuh im Heuhaufen

04.12.2017 | Veranstaltungen

Ein Tag für Schüler im Zeichen des Ozeans – der erste Bremer Ocean Day

01.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Mit Algorithmen Krankheiten erkennen

05.12.2017 | Medizintechnik

Die perfekte Wolke für Hollywood

05.12.2017 | Informationstechnologie

Stoppschalter für Lymphdrüsenkrebs

05.12.2017 | Biowissenschaften Chemie