Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neues Nano-CT-Gerät liefert hochauflösende Aufnahmen von winzigem Stummelfüßer-Bein

07.11.2017

Computertomographie (CT) ist in Krankenhäusern eine Standardprozedur. Für extrem kleine Untersuchungsgegenstände war sie aber bislang nicht geeignet. Im Fachmagazin PNAS beschreibt ein Team der Technischen Universität München (TUM) ein Nano-CT-Gerät, das dreidimensionale Röntgenbilder mit besonders hoher Auflösung liefert. Erste Test-Anwendung: Gemeinsam mit Kollegen der Universität Kassel und des Helmholtz Zentrums Geesthacht haben die Forscherinnen und Forscher den Bewegungsapparat der urtümlichen Stummelfüßer analysiert.

Bei einer CT-Analyse wird der Untersuchungsgegenstand mit Röntgenstrahlen durchleuchtet. Ein Detektor misst aus verschiedenen Winkeln, wieviel Strahlung jeweils absorbiert wird. Aus mehreren solcher Messungen lassen sich dreidimensionale Bilder des Körperinneren errechnen. Bei Objekten, die so klein sind, wie die 0,4 Millimeter langen Beinchen von Stummelfüßern, stieß das Verfahren allerdings bislang an seine Grenzen.


Nano-CT-Aufnahmen eines Stummelfüßer-Beins. Links die Außenansicht, rechts der Blick ins Gewebe mit eingefärbten Muskelfasern.

Müller, Pfeiffer / TUM / reproduced with permission from PNAS


Mithilfe des Nano-CT-Geräts lassen sich sehr kleine Objekte durchleuchten – beispielsweise die Beinchen der Stummelfüßer-Art Euperipatoides rowelli.

de Sena Oliveira / Universität Kassel / reproduced with permission from PNAS

Für hochaufgelöste Aufnahmen wurde Strahlung aus Teilchenbeschleunigern benötigt – Großanlagen, von denen es in ganz Europa nur wenige Dutzend gibt. Ansätze, die für normale Labore geeignet sind, hatten mit niedriger Auflösung zu kämpfen oder die Proben mussten aus bestimmten Materialien sein und durften eine gewisse Größe nicht überschreiten. Der Grund war oft die Verwendung sogenannter Röntgenoptiken. Vereinfacht gesagt bündeln diese den Röntgenstrahl, wie optische Linsen es mit Licht tun – sie sorgen aber auch für verschiedene Einschränkungen.

Hohe Auflösung durch neue Röntgenquelle

Das Nano-CT-System der TUM basiert auf einer neu entwickelten Röntgenquelle, die einen besonders fokussierten Strahl erzeugt, und verzichtet auf Röntgenoptiken. In Kombination mit einem extrem rauscharmen Detektor liefert das Gerät Bilder, die fast die Auflösung eines Rasterelektronenmikroskops erreichen, erfasst aber auch Strukturen unter der Oberfläche.

„Unser System bietet entscheidende Vorteile gegenüber CTs mit Röntgenoptiken“, sagt TUM-Wissenschaftler Mark Müller, Erstautor des Artikels. „Wir können Tomographien von wesentlich größeren Proben durchführen und sind zudem flexibler in Bezug auf die zu untersuchenden Materialien.“

Einblick in die Evolution von Insekten & Co.

Diese Eigenschaften kamen dem Team um Prof. Georg Mayer, Leiter des Fachgebiets Zoologie der Universität Kassel, gelegen. Die Wissenschaftlerinnen und Wissenschaftler erforschen die evolutionäre Entwicklung von Gliederfüßern (Arthropoden), zu denen etwa Insekten, Spinnen und Krebse gehören. Ihr aktueller Forschungsgegenstand sind allerdings die nächsten Verwandten der Arthropoden: die Stummelfüßer (Onychophoren), die man sich grob als Würmer mit Beinen vorstellen kann. Je nach Art werden sie bis zu 20 Zentimeter lang. Wie diese urtümlichen Tiere zoologisch genau einzuordnen sind, ist jedoch nach wie vor umstritten, vermutlich haben die Gliederfüßer und sie gemeinsame Vorfahren.

„Im Gegensatz zu den Arthropoden besitzen Onychophoren ungegliederte Extremitäten, wie sie auch bei Fossilien ihrer mutmaßlichen gemeinsamen Vorfahren zu finden sind“, sagt Georg Mayer. „Um zu klären, wie die gegliederten Extremitäten der Arthropoden entstanden sind, spielt die Untersuchung der funktionellen Anatomie der Beine der Stummelfüßer eine zentrale Rolle.“ Anhand der Nano-CT-Aufnahmen, lassen sich die einzelnen Muskelstränge eines Stummelfüßer-Beinchens untersuchen. Detaillierte Ergebnisse will das Team aus Kassel in den kommenden Monaten veröffentlichen. Sicher ist aber bereits, dass das Nano-CT-Gerät den ersten Praxistest bestanden hat.

Nano-CT: künftige Anwendung in der Medizin

Wie zahlreiche andere Bildgebungsinstrumente wurde das Nano-CT-System an der Munich School of BioEngineering (MSB) entwickelt und installiert. Dieses interdisziplinäre Forschungszentrum der TUM ist europaweit die thematisch umfassendste universitäre Einrichtung für das Schnittfeld von Medizin, Ingenieur- und Naturwissenschaften.
„Unser Ziel bei der Entwicklung des Nano-CT-Systems ist es nicht nur, biologische Proben wie das Stummelfüßer-Bein untersuchen zu können“, sagt Franz Pfeiffer, Professor für Biomedizinische Physik an der TUM, Direktor der MSB und Fellow des TUM Institute for Advanced Study (TUM-IAS).

„In Zukunft sollen mit dieser Technik auch biomedizinische Untersuchungen möglich werden. So könnte man beispielsweise Gewebeproben untersuchen, um zu prüfen, ob es sich bei ihnen um bösartige Tumore handelt. Ein zerstörungsfreier und dreidimensionaler Blick in Gewebe mit einer Auflösung, wie sie die Nano-CT ermöglicht, kann zudem neue Einsichten in die mikroskopische Entstehung von Volkskrankheiten wie Krebs liefern.“

Publikation:

M. Müller, I. de Sena Oliveira, S. Allner, S. Ferstl, P. Bidola, K. Mechlem, A. Fehringer, L. Hehn, M. Dierolf, K. Achterhold, B. Gleich, J. U. Hammel, H. Jahn, G. Mayer, F. Pfeiffer. “Myoanatomy of the velvet worm leg revealed by laboratory-based nanofocus X-ray source tomography”. PNAS (2017). DOI: 10.1073/pnas.1710742114

Publikation:

M. Müller, I. de Sena Oliveira, S. Allner, S. Ferstl, P. Bidola, K. Mechlem, A. Fehringer, L. Hehn, M. Dierolf, K. Achterhold, B. Gleich, J. U. Hammel, H. Jahn, G. Mayer, F. Pfeiffer. “Myoanatomy of the velvet worm leg revealed by laboratory-based nanofocus X-ray source tomography”. PNAS (2017). DOI: 10.1073/pnas.1710742114

Mehr Informationen:

Munich School of BioEngineering
http://www.bioengineering.tum.de/

Lehrstuhl für Biomedizinische Physik
http://www.e17.ph.tum.de

TUM Institute for Advanced Study
https://www.ias.tum.de/

Hochauflösende Bilder
https://mediatum.ub.tum.de/1401200

Kontakt:

Prof. Dr. Franz Pfeiffer
Lehrstuhl für Biomedizinische Physik und Munich School of BioEngineering
Technische Universität München
Tel.: +49 (89) 289 12551
franz.pfeiffer@tum.de

Weitere Informationen:

Video zum Nano-CT-Verfahren (YouTube, ca. 3 Min.)

https://www.youtube.com/watch?time_continue=1&v=fwtzPWdKWqY

Dr. Ulrich Marsch | Technische Universität München

Weitere Nachrichten aus der Kategorie Interdisziplinäre Forschung:

nachricht Lösung gegen Schwefelsäureangriff auf Abwasseranlagen
23.02.2018 | Technische Universität Graz

nachricht Forschende der Uni Kiel entwickeln extrem empfindliches Sensorsystem für Magnetfelder
15.02.2018 | Christian-Albrechts-Universität zu Kiel

Alle Nachrichten aus der Kategorie: Interdisziplinäre Forschung >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics