Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neuer Mutationstyp beim erblichen Dickdarmkrebs entdeckt

10.12.2009
Interdisziplinäres Forscherteam an der Goethe-Uni gewinnt Preis für Gastroenterologie

Etwa fünf Prozent aller Darmkrebsfälle beruhen auf erblichen Gendefekten, die unter dem Namen Lynch-Syndrom zusammengefasst werden. Ursache ist das Fehlen oder die eingeschränkte Funktion eines Proteins. Es korrigiert Kopierfehler, die unweigerlich bei der Weitergabe der Erbinformation von Mutterzelle zu Tochterzelle entstehen.

Auf diese Weise sammeln sich im Erbgut Defekte, die bei bis zu 80 Prozent der Betroffenen zur Entwicklung von Karzinomen des Dickdarms führen. Ein interdisziplinäres Forscherteam am Klinikum der Goethe-Universität hat nun einen neuen Typ von Keimbahnmutationen beim Lynch-Syndrom entdeckt. Die herausragende wissenschaftliche Arbeit wurde mit dem diesjährigen Preis der Rhein-Main-Arbeitsgemeinschaft für Gastroenterologie ausgezeichnet.

Dr. Angela Brieger, die am Biomedizinischen Forschungslabor der Medizinischen Klinik I schon seit einigen Jahren das Lynch-Syndrom erforscht, hat sich auf die Untersuchung der Ursachen des vielfältigen Tumorspektrums in Lynch-Syndrom-Familien spezialisiert. Neben Dickdarmkrebs können die Betroffenen nämlich auch bösartige Tumoren in anderen Organen entwickeln; beispielsweise in der Gebärmutterschleimhaut oder dem Dünndarm. Ob ein defektes Reparatur-Protein für die Tumorentstehung verantwortlich ist, ist für die Therapie von großer Bedeutung, denn Tumoren des Lynch-Syndroms sprechen auf einige der gängigen Chemotherapeutika nicht an.

Dass die bisher bekannten Protein-Defekte nicht die einzige Ursache für das Lynch-Syndrom sein können, vermutete Angela Brieger, als sie eine Familie mit ungewöhnlichem Tumorspektrum identifizierte. In dieser Familie fand sie gehäuft Brustkrebs, der sonst nicht als assoziiertes Karzinom des Lynch-Syndroms auftritt. Die Betroffenen sprachen auf die hierfür gängigen Therapieansätze nicht an. In Zusammenarbeit mit Dr. Claus Meyer vom Diagnostikzentrum für akute Leukämie konnte die Biologin das Rätsel jedoch lösen, indem sie fehlerhafte Chromosomen aufspürte. In der Leukämie-Forschung gehört diese Methode zur Routine. Bei der Diagnostik des Lynch-Syndroms fand sie jedoch bislang keine Anwendung, weil man sich auf den Nachweis defekter Reparaturproteine beschränkte.

Die beiden Wissenschaftler identifizierten bei allen betroffenen Familienmitgliedern ein mutiertes Chromosom 3, dem ein bislang nicht beschriebener, großer Abschnitt fehlte. Das hat zur Folge, dass fünf wichtige Proteine in den Tumoren nicht mehr funktionsfähig sind. Brieger und Meyer konnten bei den Mutationsträgern dieser Familie sogar ein völlig neues Genprodukt nachweisen, das nur durch den Wegfall des Chromosomenabschnitts entstehen kann. Wie die beiden Forscher vermuten, könnte dieses Protein die Entstehung der Tumoren zusätzlich begünstigen. Dies gilt es in weiteren Untersuchungen zu klären. Brieger und Meyer gehen davon aus, dass dieser neue Typ einer Keimbahnmutation kein Einzelfall beim Lynch-Syndrom ist. Durch ihre neue Methodik der Analyse des Erbgutes sind die Wissenschaftler sich sicher, künftig noch weitere ungeklärte Lynch-Syndrom Veränderungen detektieren zu können.

Informationen: Dr. Angela Brieger, Medizinische Klinik I, Universitätsklinik, Tel.: (069) 6301-6218, a.brieger@em.uni-frankfurt.de.

Dr. Claus Meyer, Diagnostikzentrum für akute Leukämie, Universitätsklinik, Tel.: (069) 6301-83971, claus.meyer@em.uni-frankfurt.de.

Die Goethe-Universität ist eine forschungsstarke Hochschule in der europäischen Finanzmetropole Frankfurt am Main. 1914 von Frankfurter Bürgern gegründet, ist sie heute eine der zehn größten Universitäten Deutschlands. Am 1. Januar 2008 gewann sie mit der Rückkehr zu ihren historischen Wurzeln als Stiftungsuniversität ein einzigartiges Maß an Eigenständigkeit. Rund um das historische Poelzig-Ensemble im Frankfurter Westend entsteht derzeit für rund 600 Millionen Euro der schönste Campus Deutschlands. Mit über 50 seit 2000 eingeworbenen Stiftungs- und Stiftungsgastprofessuren nimmt die Goethe-Universität den deutschen Spitzenplatz ein. In drei Forschungsrankings des CHE in Folge und in der Exzellenzinitiative zeigte sie sich als eine der forschungsstärksten Hochschulen.

Herausgeber: Der Präsident
Abteilung Marketing und Kommunikation, Postfach 11 19 32,
60054 Frankfurt am Main
Redaktion: Dr. Anne Hardy, Referentin für Wissenschaftskommunikation Telefon (069) 798 - 2 92 28, Telefax (069) 798 - 2 85 30, E-Mail hardy@pvw.uni-frankfurt.de

Dr. Anne Hardy | idw
Weitere Informationen:
http://www.uni-frankfurt.de

Weitere Nachrichten aus der Kategorie Interdisziplinäre Forschung:

nachricht Neues Verbundprojekt erforscht die neurodegenerative Erkrankung Morbus Alzheimer
12.09.2017 | Universitätsklinikum Würzburg

nachricht Damit sich Mensch und Maschine besser verstehen
04.09.2017 | Technische Universität Chemnitz

Alle Nachrichten aus der Kategorie: Interdisziplinäre Forschung >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die schnellste lichtgetriebene Stromquelle der Welt

Die Stromregelung ist eine der wichtigsten Komponenten moderner Elektronik, denn über schnell angesteuerte Elektronenströme werden Daten und Signale übertragen. Die Ansprüche an die Schnelligkeit der Datenübertragung wachsen dabei beständig. In eine ganz neue Dimension der schnellen Stromregelung sind nun Wissenschaftler der Lehrstühle für Laserphysik und Angewandte Physik an der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) vorgedrungen. Ihnen ist es gelungen, im „Wundermaterial“ Graphen Elektronenströme innerhalb von einer Femtosekunde in die gewünschte Richtung zu lenken – eine Femtosekunde entspricht dabei dem millionsten Teil einer milliardstel Sekunde.

Der Trick: die Elektronen werden von einer einzigen Schwingung eines Lichtpulses angetrieben. Damit können sie den Vorgang um mehr als das Tausendfache im...

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Im Spannungsfeld von Biologie und Modellierung

26.09.2017 | Veranstaltungen

Archaeopteryx, Klimawandel und Zugvögel: Deutsche Ornithologen-Gesellschaft tagt an der Uni Halle

26.09.2017 | Veranstaltungen

Unsere Arbeitswelt von morgen – Polarisierendes Thema beim 7. Unternehmertag der HNEE

26.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Europas erste Testumgebung für selbstfahrende Züge entsteht im Burgenland

26.09.2017 | Verkehr Logistik

Nerven steuern die Bakterienbesiedlung des Körpers

26.09.2017 | Biowissenschaften Chemie

Mit künstlicher Intelligenz zum chemischen Fingerabdruck

26.09.2017 | Biowissenschaften Chemie