Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Formeln zur Erforschung der Altersstruktur nicht-linearer dynamischer Systeme

23.01.2018

Mathematische Modelle, mit denen die Bewegungen von Partikeln innerhalb natürlicher Systeme untersucht werden können, sind in der Medizin, der Biologie und den Geowissenschaften weit verbreitet. Diese Kompartiment-Modelle werden genutzt, um etwa die globalen Kohlenstoff- und Wasserkreisläufe zu untersuchen oder die Ausbreitung von Schadstoffen oder Spurenelementen in Gewässern, Böden oder Organismen vorherzusagen. Wissenschaftler des Max-Planck-Instituts für Biogeochemie in Jena haben die mathematische Modellierung von Kompartiment-Systemen einen großen Schritt voran gebracht.

Sie entwickelten Formeln und Algorithmen, mit denen sich die Altersentwicklung von Partikeln beschreiben lässt, wenn die Systeme aus dem Gleichgewicht geraten sind. Ihre Ergebnisse, die aktuell in der Fachzeitschrift Proceedings of the National Academy of Sciences (PNAS) veröffentlicht wurden, erweitern die bisherige Theorie, die nur für Systeme im Gleichgewichtszustand galt.


Steinkohlekraftwerk Staudinger in Hessen, exemplarisch für die Verbrennung fossiler Brennstoffe und den damit verbundenen Kohlendioxidemissionen in die Atmosphäre.

© Dr. Klaus-Uwe Gerhardt

Die neuen Formeln und Algorithmen werden zukünftig wesentlich schnellere Berechnungen ermöglichen und darüber hinaus auch die Erforschung und das Verständnis nichtlinearer dynamischer Systeme verbessern, die vielen physikalischen und biologischen Prozessen zugrunde liegen.

Wenn Materie in ein natürliches System gelangt, findet ein ständiger Austausch der darin vorhandenen Teilchen oder Atome statt. Ein Baum, der mittels Photosynthese Kohlenstoff aus der Atmosphäre aufnimmt, bindet diesen in seinen Blättern, Stängeln und Wurzeln, aber gleichzeitig wird durch die Atmung des Baums Kohlenstoff wieder aus diesen Kompartimenten entfernt. Die Wissenschaftler interessiert dabei, wie viel Zeit die Kohlenstoffatome in jedem dieser Kompartimente verbringen.

„Mit unserer allgemeinen Herangehensweise wollen wir erfahren, wie lange die Atome oder Teilchen in den Kompartimenten bleiben und wie viel Zeit sie benötigen, um durch ein System zu reisen", sagt Holger Metzler, Erstautor der Studie und Doktorand am Max-Planck-Institut für Biogeochemie (MPI-BGC).

„In vielen Fällen wissen wir, basierend auf hochempfindlichen Messungen, dass es eine Mischung von Altersgruppen in Kompartiment-Systemen gibt. Aber bis jetzt hatten wir keine Formeln, um den Anteil der Atome in verschiedenen Altersgruppen zu berechnen und wie sich diese Altersstruktur im Laufe der Zeit mit der Entwicklung des Systems ändert", erklärt Carlos Sierra, Leiter der Gruppe Theoretische Ökosystemökologie.

Die neue mathematische Theorie, die die Wissenschaftler des MPI-BGC in Jena entwickelten, konzentriert sich auf die Beschreibung der Altersstruktur der Partikel in einem Kompartiment-System. Mit dem neuen Formelsatz können die Forscher die komplette Altersstruktur jedes einzelnen Kompartiments sowie des gesamten Systems berechnen und beobachten, wie sich das System im Laufe der Zeit entwickelt. Die Wissenschaftler entwickelten dazu auch ein Computerprogramm, welches in der Lage ist, diese komplexen Berechnungen durchzuführen.

„Diese neuen Formeln und Algorithmen sind äußerst vielseitig und können für eine Reihe unter-schiedlicher wissenschaftlicher Fragestellungen eingesetzt werden. Wir haben sie in einer Open-Source-Software umgesetzt, die anderen Wissenschaftlern frei zugänglich ist, die dann hoffentlich unsere Erkenntnisse bestätigen und in anderen wissenschaftlichen Studien nutzen", verdeutlicht Markus Müller, der an der Entwicklung der Software beteiligt war.

Anhand der Formeln lässt sich beispielsweise berechnen, wie lange es dauern würde, das gesamte Kohlendioxid aus der Atmosphäre zu entfernen, das der Mensch bei der Verbrennung fossiler Brennstoffe freisetzt. Darüber hinaus können sie angewendet werden, um festzustellen, wie lange es dauert, bis eine Substanz von einem Organismus, der sich aktiv bewegt, aufgenommen wird, wie beispielsweise von einem Sportler.

Man kann damit auch ermitteln, wie lange es währt, bis ein Schadstoff in einem See, der unter Dürreperioden leidet, auf natürliche Weise abgebaut wird. Viele verschiedene Fragestellungen, ob mit wissenschaftlichem oder gesellschaftlichem Interesse, können nun mit der neuen mathematischen Theorie angegangen werden.

Originalveröffentlichung
Metzler H., Müller M., Sierra C. (2018) Transit-time and age distributions for nonlinear time-dependent compartmental systems. Proceedings of the National Academy of Sciences, doi:10.1073/pnas.1705296115

Weitere Informationen:
Metzler, H., & Sierra, C. A. (2018). Linear Autonomous Compartmental Models as Continuous-Time Markov Chains: Transit-Time and Age Distributions. Mathematical Geosciences, 50(1), 1–34. doi:10.1007/s11004-017-9690-1

Kontakt:
Holger Metzler, hmetzler@bgc-jena.mpg.de, 03641 57 6144
Carlos Sierra, csierra@bgc-jena.mpg.de, 03641 57 6133

Weitere Informationen:

https://www.bgc-jena.mpg.de/TEE/index.html Webseite der Forschungsgruppe

Susanne Héjja | Max-Planck-Institut für Biogeochemie
Weitere Informationen:
http://www.bgc-jena.mpg.de

Weitere Nachrichten aus der Kategorie Interdisziplinäre Forschung:

nachricht Lösung gegen Schwefelsäureangriff auf Abwasseranlagen
23.02.2018 | Technische Universität Graz

nachricht Forschende der Uni Kiel entwickeln extrem empfindliches Sensorsystem für Magnetfelder
15.02.2018 | Christian-Albrechts-Universität zu Kiel

Alle Nachrichten aus der Kategorie: Interdisziplinäre Forschung >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics