Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Molekulare Sensorik für Pils-Fans

29.06.2009
TUM-Lebensmittelchemiker entdecken Bitterrezeptoren für den vollmundigen Biergenuss
„Bäh, bitter“ - diese instinktive Reaktion haben wir der Evolution zu verdanken. Denn viele giftige Substanzen schmecken auf der Zunge bitter.

Allerdings auch viele Genussmittel: Campari, Bitterschokolade oder Bier wären ohne Bitterstoffe einfach langweilig. Ein Forscherteam um Lebensmittelchemiker Prof. Thomas Hofmann von der Technischen Universität München (TUM) hat jetzt herausgefunden, wie ein kühles Blondes, ein rassiges Pils oder ein süffiges Weizen auf der Zunge ihren spezifischen, feinen Bittergeschmack entfalten.

Ob im Biergarten oder zum frisch gegrillten Fleisch – ein kühles Bier ist gerade im Sommer ein Hochgenuss. Mit dafür verantwortlich sind die Bitterstoffe des Bieres: Sie bilden sich nach der Zugabe von Hopfen während des Würzekochens und tragen zum attraktiven Geschmack des Gerstensaftes bei. 15 dieser chemischen Verbindungen aus Hopfen und Bier haben Lebensmittelchemiker der TUM jetzt genauer unter die Lupe genommen: Dabei konnten Prof. Thomas Hofmann vom Lehrstuhl für Lebensmittelchemie und Molekulare Sensorik und seine Mitarbeiter die drei Rezeptoren auf unserer Zunge identifizieren, die den Bittergeschmack des Bieres erst ans Gehirn melden – und so für den Genusseffekt sorgen.

Dazu haben die TUM-Forscher in Kooperation mit dem Deutschen Institut für Ernährungsforschung (Prof. Wolfgang Meyerhof) das Zusammenspiel der Bier-Bitterstoffe und der dazugehörigen Rezeptorproteine sowohl im Reagenzglas als auch über Geschmackstests untersucht. Um die für den Bittergeschmack von Bier verantwortlichen Rezeptoren zu identifizieren, haben die Forscher Nierenzellen gezüchtet, in denen jeweils einer der 25 menschlichen Bitterrezeptoren zur Expression gebracht wurde. Diese Spezialzellen dienen im Laborversuch als Biergeschmacks-Sensor: Nacheinander gaben die Forscher verschiedene Hopfenbitterstoffe jeweils einzeln sowie in Kombinationen zu den Zellen. Genau drei der Bitterrezeptoren - hTAS2R1, hTAS2R14 und hTAS2R40 - reagierten passgenau auf einzelne Hopfenbitterstoffe. Nur diese Rezeptoren werden also selektiv beim Biertrinken aktiviert, während die anderen 22 möglichen Bitterrezeptoren unberührt bleiben.

Was dabei im Mund des Biertrinkers passiert, konnte dieses Laborexperiment allein jedoch noch nicht beantworten. Deswegen setzte das Wissenschaftlerteam im zweiten Schritt geschulte Gaumen in einem wissenschaftlich evaluierten Geschmackstest ein. Die Testpersonen haben ihren Geschmack mindestens zwei Jahre lang trainiert und speziell ihr Bitter-Empfinden an drei Vergleichsproben standardisiert. So ist die sensorische Analyse objektiv und reproduzierbar. Vor dem Test bekamen die Prüfer eine Nasenklammer aufgesetzt, die die Wahrnehmung von Geruchsstoffen unterdrückt, damit wirklich nur die Zunge beim Schmecken beteiligt ist.

Dann mussten die Probanden antreten: Doch anstatt einer Mass Bier oder wenigstens einem Glas Pils bekamen die Geschmackstester nur die 15 verschiedenen Bitterstoffe aus dem Hopfen serviert, hochrein und einzeln aufgelöst in einer alkoholischen Lösung. Immerhin durften sie die bitteren Proben – ähnlich wie bei einer Weinverkostung – gleich wieder ausspucken. Von allen Substanzen wurden stufenweise ansteigende Konzentrationen evaluiert, denn Prof. Hofmann wollte die Wahrnehmungsschwelle sowie die Konzentrationsabhängigkeit der einzelnen Bitterstoffe beim Menschen aufdecken und diese mit den Daten der Zellexperimente vergleichen.

Dabei zeigte sich, dass die Zungen der Geschmackstester unempfindlicher auf die Bitterstoffe reagierten als die Sensorzellen im Reagenzglas. Massenspektrometrische Analysen aus Proben des Mundraums nach Biergenuss erklären es: Offenbar wird beim Verzehrvorgang ein Teil der Bitterstoffe von Mundschleimhaut und Speichelproteinen absorbiert. Das senkt die effektive Bitterstoffkonzentration im Mund, auf der die Aktivierung der Bitterrezeptoren beruht. „Auf jeden Fall sind an der Wahrnehmung der Bierbitterkeit die identifizierten Geschmacksrezeptoren sowie Adsorptionsphänomene im Mund maßgeblich verantwortlich“, so Prof. Hofmann. Wer weiß: Vielleicht würde uns sonst ein kühles Pils gar nicht schmecken.

Kontakt:
Prof. Thomas Hofmann
Lehrstuhl für Lebensmittelchemie und Molekulare Sensorik
Technische Universität München
85350 Freising-Weihenstephan
Telefon: 08161 / 71 - 2902
Email: thomas.hofmann@wzw.tum.de

Literatur:
Intelmann, D.; Batram, C.; Kuhn, Ch.; Haseleu, G.; Meyerhof, W.; Hofmann, T. (2009): Three TAS2R Bitter Taste Receptors Mediate the Psychophysical Responses to Bitter Compounds of Hops (Humulus lupulus L.) and Beer . J. Chemosensory Percept., in press; DOI 10.1007/s12078-009-9049-1
Online einsehbar unter
http://www.springerlink.com/content/120904/?Content+Status=Accepted

Hintergrund:
Das Projekt wurde teilweise von der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie gefördert. Die verwendeten Hopfenproben wurden von der Hallertauer Hopfenveredelungsgesellschaft mbH in Mainburg zur Verfügung gestellt.

Prof. Thomas Hofmann | Technische Universität München
Weitere Informationen:
http://www.molekulare-sensorik.de
http://www.tum.de

Weitere Nachrichten aus der Kategorie Interdisziplinäre Forschung:

nachricht Lösung gegen Schwefelsäureangriff auf Abwasseranlagen
23.02.2018 | Technische Universität Graz

nachricht Forschende der Uni Kiel entwickeln extrem empfindliches Sensorsystem für Magnetfelder
15.02.2018 | Christian-Albrechts-Universität zu Kiel

Alle Nachrichten aus der Kategorie: Interdisziplinäre Forschung >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics