Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Das menschliche Gehirn verstehen - TU München an Milliardenprojekt der EU beteiligt

28.01.2013
Die Europäische Kommission hat heute bekanntgegeben, dass das „Human Brain Project“ (HBP) als eines von zwei FET-Flagship-Projekten gefördert wird.

Es bündelt die europäischen Bemühungen um eine der größten Herausforderungen der modernen Wissenschaft: das Verständnis des menschlichen Gehirns. Die Gesamtkosten des Projekts werden auf 1,19 Milliarden Euro geschätzt. Die Technische Universität München (TUM) koordiniert den Teilbereich „Neurorobotics“.


An Systemen, wie dem Eccerobot, werden die Modellvorstellungen auf ihre Umsetzbarkeit getestet. Bild: TUM

Über das menschliche Gehirn und seine Arbeitsweise gibt es bereits umfangreiches Wissen. Ziel des Human Brain Project ist es, dieses Wissen zusammenzuführen. Stück für Stück soll das Gehirn und seine Arbeitsweise in Supercomputer-basierten Modellen und Simulationen rekonstruiert werden. Die entstehenden Modelle könnten dann nicht nur ein neues Verständnis des menschlichen Gehirns und seiner Krankheiten ermöglichen, sondern auch völlig neue Rechen- und Robotertechnik.

Wissenschaftler der TU München koordinieren den Teilbereich Neurorobotik. Hier werden die Modellvorstellungen an simulierten und realen Systemen erstmals auf ihre Umsetzbarkeit getestet. Die Systeme bestehen aus Sensoren zur Datenaufnahme, Elementen zur Verarbeitung der Daten und Aktoren zur Ausführung von Handlungen. „Unsere Tests werden zeigen, ob die den Modellen zugrundeliegenden Annahmen funktionieren“, sagt Professor Alois Knoll, Inhaber des Lehrstuhls für Echtzeitsysteme und Robotik der TUM. „Die Testergebnisse nutzen die anderen Gruppen im Projekt dann wieder, um ihre Modelle zu verfeinern.“

Neurorobotik – der erste Praxistest

Der Teilbereich Neurorobotik baut auf die international anerkannte Expertise der Robotikforschung an der TU München auf. Auch im Bereich Neurowissenschaften hat die TUM mit ihrer erfolgreichen Beteiligung am Exzellenzcluster Systems Neurology (SyNergy) ihre Forschungsstärke bereits unter Beweis gestellt.

Angesiedelt wird die neue Forschungsgruppe im An-Institut fortiss der TUM. „Dass wir uns zusammen mit unseren Partnern mit dem Human Brain Project in einem so harten internationalen Wettbewerb durchsetzen konnten, ist eine klare Bestätigung für unsere Strategie der Vernetzung der Wissensgebiete“, sagt TUM-Präsident Wolfgang A. Herrmann.

Weltweites Netzwerk für die Hirnforschung

Insgesamt verknüpft das Human Brain Project mehr als 80 europäische und internationale Forschungseinrichtungen sowie einige wichtige Partner in Nordamerika und Japan. Es hat einen strengen wissenschaftlichen Auswahlprozess durchlaufen und eine Laufzeit von zehn Jahren (2013 bis 2023). Die Kosten des Projekts werden auf 1,19 Milliarden Euro geschätzt. Seine Koordination übernimmt Professor Henry Markram, Neurowissenschaftler an der Ecole Polytechnique Fédérale de Lausanne (EPFL). In den kommenden Monaten werden die Partner mit der Europäischen Gemeinschaft eine detaillierte Vereinbarung für die 30-monatige Startphase aushandeln. Noch in diesem Jahr soll dann das Projekt seine Arbeit aufnehmen.

Kontakt:

Prof. Dr.-Ing. Alois C. Knoll
Technische Universität München
Lehrstuhl für Echtzeitsysteme und Robotik
Boltzmannstr. 3, 85748 Garching, Germany
Tel.: +49 89 289 18104 (Sek.: 18106)
Fax: +49 89 289 18107
E-Mail: knoll@in.tum.de

Dr. Ulrich Marsch | idw
Weitere Informationen:
http://www6.in.tum.de/
http://www.humanbrainproject.eu/index.html

Weitere Nachrichten aus der Kategorie Interdisziplinäre Forschung:

nachricht Lösung gegen Schwefelsäureangriff auf Abwasseranlagen
23.02.2018 | Technische Universität Graz

nachricht Forschende der Uni Kiel entwickeln extrem empfindliches Sensorsystem für Magnetfelder
15.02.2018 | Christian-Albrechts-Universität zu Kiel

Alle Nachrichten aus der Kategorie: Interdisziplinäre Forschung >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics