Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie mechanische Kräfte die frühe embryonale Entwicklung steuern

11.12.2013
Lichtblattmikroskopie führt zu neuen biophysikalischen Erkenntnissen

Wie organisieren sich Embryonen im Anfangsstadium ihres Lebens? Bisher wurden vor allem biochemische Signalwege dafür verantwortlich gemacht, wie sich Zellen während der frühen embryonalen Entwicklung räumlich anordnen.


Prof. Dr. Matthias Weiss, Lehrstuhl für Experimentalphysik I, Universität Bayreuth.

Dass dabei auch physikalische Kräfte eine wesentliche Rolle spielen, haben Wissenschaftler um Prof. Dr. Matthias Weiss am Lehrstuhl für Experimentalphysik I der Universität Bayreuth jetzt gezeigt.

Am Beispiel von Nematoden – genauer: von Würmern der Spezies Caenorhabditis elegans – konnten sie nachweisen: Die wechselseitige Abstoßung embryonaler Zellen trägt wesentlich zur funktionsgerechten Entwicklung des Organismus bei, z.B. bei der frühen Ausbildung der Körperachsen.

Bei den Forschungsarbeiten kam eine noch junge Mikroskopietechnik zum Einsatz, die sogenannte Lichtblattmikroskopie (Selective Plane Illumination Microscopy, kurz: SPIM). Mit dieser Technologie lassen sich vielzellige Organismen während ihrer Entwicklung in Echtzeit untersuchen, ohne dass die Lichteinstrahlung toxische Wirkung entfaltet und dabei Zellen schädigt oder die Untersuchungsergebnisse verfälscht.

SPIM ermöglicht es, den Aufbau eines Organismus – wie beispielsweise eines Embryos – „scheibchenweise“ zu untersuchen. Dabei wird eine Schicht nach der anderen beleuchtet und mikroskopisch erfasst. Die so entstehenden Bilder werden schließlich zusammengefügt, so dass eine dreidimensionale Rekonstruktion des gesamten Embryos mit hoher räumlicher und zeitlicher Auflösung entsteht. Das Bayreuther Forschungsteam hat so die Embryonalentwicklung von Würmern der Spezies Caenorhabditis elegans präzise verfolgen können. Dabei haben sie insbesondere beobachtet, wie sich die wachsende Anzahl von Zellen innerhalb des Organismus anordnet.

„Zunächst haben wir beobachtet, wie sich die neu entstehenden Zellen während der frühesten Entwicklungsphase der Wurm-Embryonen räumlich bewegen. Dabei ist uns aufgefallen, dass sich die Bewegungen in verschiedenen Embryonen weitgehend gleichen“, erklärt Prof. Weiss. „Deshalb lag die Überlegung nahe, dass diese Bewegungen mit einem physikalischen Modell erklärt werden können, das ausschließlich die mechanischen Wechselwirkungen zwischen den Zellen berücksichtigt.“

Diese Wechselwirkungen zwischen Zellen haben die Bayreuther Forscher in einem Simulationsmodell als reine elastische Abstoßung dargestellt. Unter dieser Annahme folgen die Zellbewegungen im Modell immer den gleichen mechanischen Gesetzen: Sobald im Embryo durch Zellteilung neue Zellen entstanden sind, befinden sich diese – weil die Schale des Embryos nur wenig Platz bietet – zunächst in einer unkomfortablen Position. Sie sind auf engem Raum zusammengequetscht und haben entsprechende „Beulen“. Genau diese Verformung setzt abstoßende mechanische Kräfte frei, die die Zellen innerhalb des Embryos an ihre neuen Positionen schubsen. Die Zellen kommen dann zur Ruhe, wenn sie gleichsam entspannt und ohne Deformationen ihren jeweiligen Platz innerhalb des embryonalen Organismus gefunden haben. Die Zellen verhalten sich also im Modell ähnlich wie weiche Gummibälle. Werden die Bälle gegeneinanderdrückt, streben sie auseinander, um einander möglichst wenig zu verformen.

Damit sich das Modell mit den empirischen Ergebnissen der Lichtblattmikroskopie direkt vergleichen lässt, haben die Biophysiker auch die experimentell beobachtete Dauer der Zellteilungen und die Ausrichtungen der Zellteilungsachsen in das Modell einbezogen; zudem wurden auch die Asymmetrien der Zellgröße berücksichtigt, die bei der Zellteilung gelegentlich vorkommen.

Der Vergleich ergibt eine beeindruckende Übereinstimmung: Die räumlichen Zellbewegungen, wie sie das Modell vorhergesagt hat, stimmen mit den Bildsequenzen, die mithilfe der Lichtblattmikroskopie entstanden, hervorragend überein. Die durch Zellteilung neu entstandenen Zellen positionieren sich innerhalb der Embryos bis zur Phase der Gastrulation immer so, dass sie einander möglichst wenig verformen. Dabei sagt das Simulationsmodell nicht nur alle Endpositionen der Zellen richtig vorher, sondern auch die Wege („Trajektorien“), auf denen sie zu diesen Endpositionen gelangen. Und noch in weiteren Punkten werden die Vorhersagen des Modells durch die mikroskopischen Befunde bestätigt: Der Wurm-Embryo nimmt im vierzelligen Zustand immer eine scheibenartig flache Form an. Die nächste Zellteilung aus diesem Zustand führt dazu, dass zwei Zellen in unterschiedliche Richtungen gequetscht werden. Auf diese Weise wird die Bauch-Rücken-Körperachse des Wurms endgültig festgelegt.

„Unsere Forschungsergebnisse belegen, dass die frühe embryonale Entwicklung wesentlich von mechanischen Kräften gesteuert wird, was sich mit physikalischen Modellen nicht nur wissenschaftlich beschreiben, sondern auch weitgehend vorhersagen lässt“, meint Prof. Weiss. „Die Lichtblattmikroskopie eröffnet hier auch ein weites Feld für quantitative Tests von Modellen, wie sie mit herkömmlichen mikroskopischen Techniken kaum möglich waren.“
Veröffentlichung:
Rolf Fickentscher, Philipp Struntz, and Matthias Weiss,
Mechanical Cues in the Early Embryogenesis of Caenorhabditis elegans,
in: Biophysical Journal (2013), Volume 105, pp. 1805 - 1811
DOI: 10.1016/j.bpj.2013.09.005
Ansprechpartner:
Prof. Dr. Matthias Weiss
Lehrstuhl für Experimentalphysik I
Universität Bayreuth
D-95440 Bayreuth
Tel.: +49 (0)921 55-2500 und -2501
E-Mail: matthias.weiss@uni-bayreuth.de

Christian Wißler | Universität Bayreuth
Weitere Informationen:
http://www.uni-bayreuth.de
http://www.uni-bayreuth.de/presse/Aktuelle-Infos/2013/319-Embryonale-Entwicklung.pdf

Weitere Nachrichten aus der Kategorie Interdisziplinäre Forschung:

nachricht Placebo-Effekt hilft nach Herzoperationen
11.01.2017 | Philipps-Universität Marburg

nachricht Innovation: Optische Technologien verändern die Welt
01.12.2016 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Interdisziplinäre Forschung >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Textiler Hochwasserschutz erhöht Sicherheit

Wissenschaftler der TU Chemnitz präsentieren im Februar und März 2017 ein neues temporäres System zum Schutz gegen Hochwasser auf Baumessen in Chemnitz und Dresden

Auch die jüngsten Hochwasserereignisse zeigen, dass vielerorts das natürliche Rückhaltepotential von Uferbereichen schnell erschöpft ist und angrenzende...

Im Focus: Wie Darmbakterien krank machen

HZI-Forscher entschlüsseln Infektionsmechanismen von Yersinien und Immunantworten des Wirts

Yersinien verursachen schwere Darminfektionen. Um ihre Infektionsmechanismen besser zu verstehen, werden Studien mit dem Modellorganismus Yersinia...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Erforschung von Elementarteilchen in Materialien

Laseranregung von Semimetallen ermöglicht die Erzeugung neuartiger Quasiteilchen in Festkörpersystemen sowie ultraschnelle Schaltung zwischen verschiedenen Zuständen.

Die Untersuchung der Eigenschaften fundamentaler Teilchen in Festkörpersystemen ist ein vielversprechender Ansatz für die Quantenfeldtheorie. Quasiteilchen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Künftige Rohstoffexperten aus aller Welt in Freiberg zur Winterschule

18.01.2017 | Veranstaltungen

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungen

Über intelligente IT-Systeme und große Datenberge

17.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Der erste Blick auf ein einzelnes Protein

18.01.2017 | Biowissenschaften Chemie

Das menschliche Hirn wächst länger und funktionsspezifischer als gedacht

18.01.2017 | Biowissenschaften Chemie

Zur Sicherheit: Rettungsautos unterbrechen Radio

18.01.2017 | Verkehr Logistik