Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Magnetische Materialien: Festplatten & Flüssigkeits-Chips digital optimieren

21.11.2011
Computermodell der FH St. Pölten setzt neue Standards für die Entwicklung magnetischer Materialien

Erstmals ist es gelungen, mit einem einzigen Computermodell das Verhalten magnetischer Materialien in völlig unterschiedlichen Anwendungen darzustellen. Dafür hat die FH St. Pölten mehrere Simulationsverfahren in einem hochentwickelten Modell zusammengefasst.

Dank dieser Kombination können nun Anforderungen verschiedenster Industrien mit einem Computermodell erfüllt werden. Morgen wird das Modell in einer Keynote-Speech auf einer internationalen Konferenz der Fachwelt vorgestellt. Dabei stehen zwei konkrete Anwendungsbeispiele im Mittelpunkt - die Optimierung von Festplatten und die Entwicklung von Microfluidic-Chips für medizinische Anwendungen.

Magnetismus ist eine günstige und gern genutzte Kraftquelle. Egal ob IT, Umwelttechnik oder Medizin - magnetische Materialien mischen mit. Die zunehmende Miniaturisierung stellt dabei kein Problem dar. Ganz im Gegenteil - die berührungslose Kraftübertragung von Magneten prädestiniert sie geradezu für das Wirken im Verborgenen. Doch je kleiner die Anwendung desto komplexer die vorherige Planung. Hier helfen exakte Computersimulationen. Mit ihnen kann bereits am digitalen Reißbrett das Verhalten unter diversen Anwendungsbedingungen kalkuliert werden. Der Fachhochschule St. Pölten gelang es nun, dafür einen neuen Standard zu setzen: ein Computermodell, das auf Grund einer einmaligen Kombination verschiedener Simulationsverfahren die Berechnung völlig unterschiedlicher Anwendungen magnetischer Materialien erlaubt.

DIMENSION DANK KOMBINATION
Zu dem Modell meint der Leiter des Studiengangs Industrial Simulation an der FH St. Pölten, Prof. Dr. Thomas Schrefl: "Uns ist es gelungen, ein Standardverfahren der Festkörpersimulation - die sogenannte Finite-Elemente-Methode - mit anderen modernen Simulationstechniken zu kombinieren. Zu diesen zählen z. B. stochastische Optimierungsalgorithmen, Lattice Boltzmannverfahren zur Strömungssimulation und schnelle Randelementeverfahren zur Berechnung magnetischer Felder. So erlaubt unser Modell nun Simulationen mikromagnetischen Materialverhaltens über mehrere Größendimensionen hinweg: vom atomaren bis zum sichtbaren Größenbereich."

Auf der 12. Trends in Nanotechnology International Conference vom 21. - 25. November in Spanien werden von Dr. Schrefl nun bereits zwei konkrete - und sehr unterschiedliche - Anwendungen des Computermodells vorgestellt: Die Optimierung von Festplattenspeichern und die Entwicklung von Mikrofluidic Chips für den Einsatz in der Medizin.

FEST & FLÜSSIG
Für die Optimierung von Festplatten stellt das Design der Schreibköpfe eine wesentliche Herausforderung dar, wie Dr. Schrefl erläutert: "Schreibköpfe schaffen ein magnetisches Feld, das durch Änderungen des Datenträgermaterials einen Bit auf der Festplatte codiert. Schon heute arbeiten sie im Bereich von Nanometern und Pikosekunden. Auf Grund dieser räumlichen und zeitlichen Dimensionen wird die Prototypenentwicklung solcher Schreibköpfe immer teurer. Da liefert unser Computermodell rasch und günstig zuverlässige Ergebnisse für neue Designs." Denn dank der hohen Kompetenz der FH St. Pölten im Bereich magnetischer Materialien gelang es dem Team um Dr. Schrefl, das Verhalten der relevanten magnetischen Materialien in der notwendigen Größenordnung zu simulieren. Anstatt das Design eines Schreibkopfs am Bildschirm einzugeben, kann nun ein optimales Design vom Computer errechnet werden. Die Auswirkungen auf das magnetische Feld - und damit auf die Datenspeicherung - können direkt kalkuliert werden.

Dass die selbe Computersimulation auch in der Biomedizin eingesetzt wird, zeigt ihr breites Nutzungsspektrum - und damit ihr kommerzielles Potenzial. Dort wird sie zur Entwicklung spezieller Mikrofluidic-Chips eingesetzt. Diese dienen der Extraktion bestimmter Komponenten aus dem Blut. Bei einer speziellen Variante dieser Chips werden magnetische Strukturen zum Herausfiltern der Fremdkörper verwendet. Die Anordnung der Strukturen hat maßgeblichen Einfluss darauf, welche Komponenten eingefangen werden können - und ist meistens nach der Herstellung der Chips fixiert. Nicht so bei einem Chip-Design, das mit dem Computermodell der FH St. Pölten optimiert wird. Hier kann durch äußere magnetische Kräfte die räumliche Anordnung der magnetischen Strukturen - und damit die Filterfunktion des Chips - verändert werden. So kann in Zukunft ein einzelner Chip für verschiedene Filteraufgaben eingesetzt werden.

Für Dr. Schrefl stellt die erfolgreiche Entwicklung eines praxistauglichen Computermodells einen schönen Erfolg des Kompetenzfelds Simulation und des Studiengangs Industrial Simulation an der FH St. Pölten dar: "Industrial Simulation ist ein ungemein vielschichtiger Tätigkeitsbereich. Kompetenzen im Bereich Mathematik und IT werden zusammengeführt, um kreative Ideen, Intuitionen und Theorien für verschiedenste Industrien realitätsnah zu testen - ohne hohen Aufwand an Zeit und Geld."

Das von der NÖ Forschungs- und Bildungsges.m.b.H geförderte Projekt Tunable microfluidic chips for isolating circulating cancer cells wird in Zusammenarbeit mit den Projektpartnern Austrian Institute of Technology, Health & Environment Department, Donau Universität Krems, Zentrum für Biomedizinische Technologie, Landesklinikum Krems und dem Hämatologisch-Onkologischen Dienst durchgeführt.

Über die Fachhochschule St. Pölten
Die Fachhochschule St. Pölten ist Anbieterin praxisbezogener und leistungsorientierter Hochschulausbildung in den Bereichen Technologie, Wirtschaft und Gesundheit & Soziales. In mittlerweile 16 Studiengängen werden mehr als 1800 Studierende betreut. Neben der Lehre widmet sich die FH St. Pölten intensiv der Forschung. Die wissenschaftliche Arbeit erfolgt innerhalb der Studiengänge sowie in eigens etablierten Instituten, in denen laufend praxisnahe und anwendungsorientierte Forschungsprojekte entwickelt und umgesetzt werden.
Wissenschaftlicher Kontakt:
Prof. Dr. Thomas Schrefl
Fachhochschule St. Pölten
Leiter des Master-Studiengangs Industrial Simulation Matthias Corvinus-Str. 15
3100 St. Pölten
T +43 / (0)2742 / 313 228 - 313
E thomas.schrefl@fhstp.ac.at
W http://www.fhstp.ac.at
Redaktion & Aussendung:
PR&D - Public Relations für Forschung & Bildung Mariannengasse 8
1090 Wien
T +43 / (0)1 / 505 70 44
E contact@prd.at
W http://www.prd.at

Dr. Katharina Schnell | PR&D
Weitere Informationen:
http://www.fhstp.ac.at

Weitere Nachrichten aus der Kategorie Interdisziplinäre Forschung:

nachricht Neues Verbundprojekt erforscht die neurodegenerative Erkrankung Morbus Alzheimer
12.09.2017 | Universitätsklinikum Würzburg

nachricht Damit sich Mensch und Maschine besser verstehen
04.09.2017 | Technische Universität Chemnitz

Alle Nachrichten aus der Kategorie: Interdisziplinäre Forschung >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochfeldmagnet am BER II: Einblick in eine versteckte Ordnung

Seit dreißig Jahren gibt eine bestimmte Uranverbindung der Forschung Rätsel auf. Obwohl die Kristallstruktur einfach ist, versteht niemand, was beim Abkühlen unter eine bestimmte Temperatur genau passiert. Offenbar entsteht eine so genannte „versteckte Ordnung“, deren Natur völlig unklar ist. Nun haben Physiker erstmals diese versteckte Ordnung näher charakterisiert und auf mikroskopischer Skala untersucht. Dazu nutzten sie den Hochfeldmagneten am HZB, der Neutronenexperimente unter extrem hohen magnetischen Feldern ermöglicht.

Kristalle aus den Elementen Uran, Ruthenium, Rhodium und Silizium haben eine geometrisch einfache Struktur und sollten keine Geheimnisse mehr bergen. Doch das...

Im Focus: Schmetterlingsflügel inspiriert Photovoltaik: Absorption lässt sich um bis zu 200 Prozent steigern

Sonnenlicht, das von Solarzellen reflektiert wird, geht als ungenutzte Energie verloren. Die Flügel des Schmetterlings „Gewöhnliche Rose“ (Pachliopta aristolochiae) zeichnen sich durch Nanostrukturen aus, kleinste Löcher, die Licht über ein breites Spektrum deutlich besser absorbieren als glatte Oberflächen. Forschern am Karlsruher Institut für Technologie (KIT) ist es nun gelungen, diese Nanostrukturen auf Solarzellen zu übertragen und deren Licht-Absorptionsrate so um bis zu 200 Prozent zu steigern. Ihre Ergebnisse veröffentlichten die Wissenschaftler nun im Fachmagazin Science Advances. DOI: 10.1126/sciadv.1700232

„Der von uns untersuchte Schmetterling hat eine augenscheinliche Besonderheit: Er ist extrem dunkelschwarz. Das liegt daran, dass er für eine optimale...

Im Focus: Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

Im Blut zirkulierende Biomoleküle und Zellen sind Träger diagnostischer Information, deren Analyse hochwirksame, individuelle Therapien ermöglichen. Um diese Information zu erschließen, haben Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein Mikrochip-basiertes Diagnosegerät entwickelt: Der »AnaLighter« analysiert und sortiert klinisch relevante Biomoleküle und Zellen in einer Blutprobe mit Licht. Dadurch können Frühdiagnosen beispielsweise von Tumor- sowie Herz-Kreislauf-Erkrankungen gestellt und patientenindividuelle Therapien eingeleitet werden. Experten des Fraunhofer ILT stellen diese Technologie vom 13.–16. November auf der COMPAMED 2017 in Düsseldorf vor.

Der »AnaLighter« ist ein kompaktes Diagnosegerät zum Sortieren von Zellen und Biomolekülen. Sein technologischer Kern basiert auf einem optisch schaltbaren...

Im Focus: Neue Möglichkeiten für die Immuntherapie beim Lungenkrebs entdeckt

Eine gemeinsame Studie der Universität Bern und des Inselspitals Bern zeigt, dass spezielle Bindegewebszellen, die in normalen Blutgefässen die Wände abdichten, bei Lungenkrebs nicht mehr richtig funktionieren. Zusätzlich unterdrücken sie die immunologische Bekämpfung des Tumors. Die Resultate legen nahe, dass diese Zellen ein neues Ziel für die Immuntherapie gegen Lungenkarzinome sein könnten.

Lungenkarzinome sind die häufigste Krebsform weltweit. Jährlich werden 1.8 Millionen Neudiagnosen gestellt; und 2016 starben 1.6 Millionen Menschen an der...

Im Focus: Sicheres Bezahlen ohne Datenspur

Ob als Smartphone-App für die Fahrkarte im Nahverkehr, als Geldwertkarten für das Schwimmbad oder in Form einer Bonuskarte für den Supermarkt: Für viele gehören „elektronische Geldbörsen“ längst zum Alltag. Doch vielen Kunden ist nicht klar, dass sie mit der Nutzung dieser Angebote weitestgehend auf ihre Privatsphäre verzichten. Am Karlsruher Institut für Technologie (KIT) entsteht ein sicheres und anonymes System, das gleichzeitig Alltagstauglichkeit verspricht. Es wird nun auf der Konferenz ACM CCS 2017 in den USA vorgestellt.

Es ist vor allem das fehlende Problembewusstsein, das den Informatiker Andy Rupp von der Arbeitsgruppe „Kryptographie und Sicherheit“ am KIT immer wieder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Das Immunsystem in Extremsituationen

19.10.2017 | Veranstaltungen

Die jungen forschungsstarken Unis Europas tagen in Ulm - YERUN Tagung in Ulm

19.10.2017 | Veranstaltungen

Bauphysiktagung der TU Kaiserslautern befasst sich mit energieeffizienten Gebäuden

19.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Forscher finden Hinweise auf verknotete Chromosomen im Erbgut

20.10.2017 | Biowissenschaften Chemie

Saugmaschinen machen Waschwässer von Binnenschiffen sauberer

20.10.2017 | Ökologie Umwelt- Naturschutz

Strukturbiologieforschung in Berlin: DFG bewilligt Mittel für neue Hochleistungsmikroskope

20.10.2017 | Förderungen Preise