Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Laser-beschleunigte Protonen zur Krebstherapie

13.09.2016

Die Bestrahlung mit Protonen gilt als sehr wirksame und gleichzeitig schonende Methode der Krebsbehandlung. Ein interdisziplinäres Team von Physikern und Mediziner aus Düsseldorf, Essen und Braunschweig haben nun die grundsätzliche Eignung von Laser-beschleunigten Protonen für die Krebstherapie untersucht. In Scientific Reports berichten sie, dass diese noch geeigneter sein können als Protonen aus klassischen Beschleunigern.

Die Tumorbestrahlung mit Protonen hat den großen Vorteil, dass man in einem eng umrissenen Tumorgewebe hohe Energiedosen deponieren kann, ohne dass das umliegende Gewebe stark geschädigt wird.


Aufbau des Experiments zur Bestrahlung von Zellproben mit Laser-beschleunigten Protonen.

Oswald Willi

Allerdings benötigt man komplexe und teure Teilchenbeschleuniger, um die Protonen mit den notwendigen Energien erzeugen zu können. Damit kann die Protonentherapie nur an wenigen Zentren wie dem Westdeutschen Protonentherapiezentrum Essen angeboten werden und steht nicht allen Tumorpatienten zur Verfügung.

Als mögliche zukünftige Alternative zu klassischen Teilchenbeschleunigern wird der Einsatz von Laserbeschleunigern getestet. Hierbei wird ein extrem starker Laserstrahl auf eine Folie geschossen. Der Laserstrahl verdampft die Folie und ionisiert die atomaren Bauteile.

Dadurch entsteht auf sehr kleinem Raum ein extrem hohes elektrisches Feld, welches etwa Protonen beschleunigen kann. Diese Anlagen sind erheblich kleiner, einfacher aufgebaut und können deshalb auch an kleineren Einrichtungen betrieben werden.

Wissenschaftler der Heinrich-Heine-Universität Düsseldorf um Prof. Dr. Oswald Willi (Institut für Laser- und Plasmaphysik) und Prof. Dr. Friedrich Boege (Institut für Klinische Chemie und Labordiagnostik) haben zusammen mit Kollegen der Universität Duisburg-Essen und der Physikalisch-Technischen Bundesanstalt in Braunschweig die Eignung von Laser-beschleunigten Protonen für die Protonenstrahltherapie untersucht.

An Zellproben stellten sie fest, dass Laser-beschleunigte Protonen bei gleicher Strahlendosis die gleiche Zahl an DNA-Schäden verursachen wie Protonen aus konventionellen Beschleunigern. Sie zerstören damit genauso effizient Krebszellen.

Die Laser-beschleunigten Protonen bieten möglicherweise sogar einen therapeutischen Vorteil. Sie erzeugen deutlich weniger Sauerstoffradikale, die wiederum zu unerwünschten Nebenwirkungen können. Eine mögliche Ursache: Die Protonenpulse aus dem Laser-Beschleuniger sind nur Pikosekunden lang; zu kurz, um Moleküle wie Sauerstoffradikale bilden zu können. Ihre Ergebnisse veröffentlichten die Wissenschaftler in den zur NATURE-Gruppe gehörenden Scientific Reports. Allerdings ist noch viele Jahre Grundlagenforschung zu leisten, bis die Laser-beschleunigten Protonen tatsächlich in den klinischen Einsatz am Patienten kommen können.

Hintergrund: Tumortherapie mit Protonen

Bei der klassischen Tumorbestrahlung kommt Röntgenstrahlung (zum Beispiel aus kompakten Linearbeschleunigern) oder Gammastrahlung aus radioaktiven Quellen zum Einsatz. Das Problem bei der Bestrahlung mit hochenergetischen Photonen ist, dass die höchste Dosis direkt oder nahe an der Oberfläche des bestrahlten Körperteils deponiert wird. Die Dosis nimmt mit höherer Eindringtiefe ins Gewebe kontinuierlich ab. Damit wird – gerade bei tiefer sitzenden Tumoren – ein großer Bereich gesunden Gewebes bei der Bestrahlung mit geschädigt, was zu den unerwünschten Nebenwirkungen führt.

Im Gegensatz dazu kann man bei der Protonentherapie sehr genau steuern, wo im Körper ein Großteil der Energie deponiert wird. Denn Protonen durchlaufen Materie auf der größten Wegstrecke mit nur geringem Energieverlust. Erst am Ende ihrer Bahn bremsen sie sehr stark ab und verlieren den größten Teil ihrer anfänglichen Energie in einem sehr kleinen Volumen. Wie tief dieser so genannte Bragg-Peak im Gewebe liegt, hängt von der Anfangsenergie der Protonen ab.

Mit Protonen kann also besonders viel Energie in das zu zerstörende Tumorgewebe gebracht werden, während das benachbarte gesunde Gewebe wenig beeinträchtigt wird, was die Nebenwirkungen erheblich senkt. Außerdem können gerade auch tiefer liegende Tumore effizient bestrahlt werden.

Originalveröffentlichung

S. Raschke, S. Spickermann, T. Toncian, M. Swantusch, J. Boeker, U. Giesen, G. Iliakis, O. Willi & F. Boege, Ultra-short laser-accelerated proton pulses have similar DNA-damaging effectiveness but produce less immediate nitroxidative stress than conventional proton beams, Scientific Reports,6:32441, 31. August 2016

DOI: 10.1038/srep32441

Kontakt

Prof. Dr. Oswald Willi
Institut für Laser- und Plasmaphysik
Tel.: 0211/81-11381
E-Mail: oswald.willi@hhu.de

Weitere Informationen:

http://dx.doi.org/10.1038/srep32441

Dr.rer.nat. Arne Claussen | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.hhu.de/

Weitere Nachrichten aus der Kategorie Interdisziplinäre Forschung:

nachricht Bergamoten – Verlockung und Verhängnis für Tabakschwärmer
21.04.2017 | Max-Planck-Institut für chemische Ökologie

nachricht Resistiver Schaltmechanismus aufgeklärt
19.04.2017 | Forschungszentrum Jülich GmbH

Alle Nachrichten aus der Kategorie: Interdisziplinäre Forschung >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Immunzellen helfen bei elektrischer Reizleitung im Herzen

Erstmals elektrische Kopplung von Muskelzellen und Makrophagen im Herzen nachgewiesen / Erkenntnisse könnten neue Therapieansätze bei Herzinfarkt und Herzrhythmus-Störungen ermöglichen / Publikation am 20. April 2017 in Cell

Makrophagen, auch Fresszellen genannt, sind Teil des Immunsystems und spielen eine wesentliche Rolle in der Abwehr von Krankheitserregern und bei der...

Im Focus: Tief im Inneren von M87

Die Galaxie M87 enthält ein supermassereiches Schwarzes Loch von sechs Milliarden Sonnenmassen im Zentrum. Ihr leuchtkräftiger Jet dominiert das beobachtete Spektrum über einen Frequenzbereich von 10 Größenordnungen. Aufgrund ihrer Nähe, des ausgeprägten Jets und des sehr massereichen Schwarzen Lochs stellt M87 ein ideales Laboratorium dar, um die Entstehung, Beschleunigung und Bündelung der Materie in relativistischen Jets zu erforschen. Ein Forscherteam unter der Leitung von Silke Britzen vom MPIfR Bonn liefert Hinweise für die Verbindung von Akkretionsscheibe und Jet von M87 durch turbulente Prozesse und damit neue Erkenntnisse für das Problem des Ursprungs von astrophysikalischen Jets.

Supermassereiche Schwarze Löcher in den Zentren von Galaxien sind eines der rätselhaftesten Phänomene in der modernen Astrophysik. Ihr gewaltiger...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: Neu entdeckter Exoplanet könnte bester Kandidat für die Suche nach Leben sein

Supererde in bewohnbarer Zone um aktivitätsschwachen roten Zwergstern gefunden

Ein Exoplanet, der 40 Lichtjahre von der Erde entfernt einen roten Zwergstern umkreist, könnte in naher Zukunft der beste Ort sein, um außerhalb des...

Im Focus: Resistiver Schaltmechanismus aufgeklärt

Sie erlauben energiesparendes Schalten innerhalb von Nanosekunden, und die gespeicherten Informationen bleiben auf Dauer erhalten: ReRAM-Speicher gelten als Hoffnungsträger für die Datenspeicher der Zukunft.

Wie ReRAM-Zellen genau funktionieren, ist jedoch bisher nicht vollständig verstanden. Insbesondere die Details der ablaufenden chemischen Reaktionen geben den...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

3. Bionik-Kongress Baden-Württemberg

24.04.2017 | Veranstaltungen

Smart-Data-Forschung auf dem Weg in die wirtschaftliche Praxis

21.04.2017 | Veranstaltungen

Baukultur: Mehr Qualität durch Gestaltungsbeiräte

21.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

1. Essener Gefahrguttage am 19.-20. September 2017 mit fachbegleitender Ausstellung

24.04.2017 | Seminare Workshops

Laserstrukturierung verbessert Haftung auf Metall und schont die Umwelt

24.04.2017 | Maschinenbau

Forscherteam der Universität Bremen untersucht Korallenbleiche

24.04.2017 | Biowissenschaften Chemie