Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Interaktion zwischen Design und Funktionalität

05.08.2010
Neues BMBF-Projekt zur Digitalen Geometrieverarbeitung unter Beteiligung des MATHEON. GEOMEC setzt in der virtuellen Produktentwicklung vollständig neue Akzente, die nicht nur für die Computergrafik von Bedeutung sind, sondern auch in vielen Industriebereichen Anwendung finden.

Ohne die digitale Geometrieverarbeitung kommen seit Jahren weder Automobilbau, noch die Lebenswissenschaften, die Architektur oder auch die Hersteller von Animationsfilmen aus. Sie hat in den vergangenen Jahren neue Märkte erobert und unser Kommunikationsverhalten nachhaltig verändert.

Grundlage und treibende Kraft dieser Entwicklung sind Methoden der angewandten Mathematik und daraus resultierende effiziente und robuste Algorithmen. Entscheidend daran beteiligt ist auch eine Arbeitsgruppe am DFG-Forschungszentrum MATHEON. Im Rahmen eines durch das Bundesministerium für Bildung und Forschung (BMBF) geförderten Projektes „GEOMEC – Diskrete Geometrische Strukturmechanik für Anwendungen in virtueller und erweiterter Realität“ hat auch die Arbeitsgruppe von Prof. Ulrich Pinkall vom MATHEON den Zuschlag für das Teilprojekt „Elastizität mit Diskreter Differentialgeometrie“ erhalten. Koordiniert wird das Verbundprojekt von Juniorprofessor Max Wardetzky von der Georg-August-Universität Göttingen.

Bisher wurden physikalische Aspekte im Computer Aided Geometric Design noch nicht in vollem Umfang berücksichtigt. Diese dadurch in heutigen Produktionsprozessen oft entstehende kostspielige Lücke zwischen Design und Funktionalität will GEOMEC schließen. Beispielsweise möchte ein Designer verstehen, wie die Veränderung von Parametern ein physikalisches System beeinflusst. Gleichzeitig stellt aber der Rechenaufwand einer genauen Simulation derzeit einen erheblichen Zeitaufwand dar und erlaubt kein interaktives Navigieren. Ziel des Projektes ist es nun, diese Einschränkung durch neuartige Methoden zu beheben und die physikalischen Bahnen in Echtzeit und auf groben Skalen beschreiben zu können. Dieser Ansatz ist insbesondere deshalb von Bedeutung, weil für den Designer die Extraktion wesentlicher Informationen von Interesse ist, jedoch niemals jedes Detail der tatsächlichen physikalischen Trajektorie.

So werden neue interaktive Verfahren und Methoden entwickelt, um die physikalisch–funktionalen Aspekte direkt in den Gestaltungs– und Entwurfsprozess zu integrieren. Damit setzt GEOMEC in der virtuellen Produktentwicklung und dem Rapid Prototyping vollständig neue Akzente. Demonstriert wird der Innovationsgehalt der neuen Methoden exemplarisch anhand einer Auswahl konkreter Anwendungen aus dem Bereich der Automobilindustrie.

Aus mathematischer Sicht werden diese Ziele durch eine Verschmelzung von Methoden der Strukturmechanik mit neuesten Erkenntnissen der Diskreten Differentialgeometrie (DDG) erreicht. Die DDG ist an der Schnittstelle von Numerik und klassischer Differentialgeometrie angesiedelt. Ihr Ansatz besteht darin, Axiome, Invarianten und fundamentale Eigenschaften der etablierten klassischen Differentialgeometrie auf struktureller Ebene zu wahren und zu imitieren. Es hat sich hier gezeigt, dass schwierige und tiefe Eigenschaften der klassischen Theorie oft eine verblüffend einfache und intuitive Entsprechung im Diskreten finden.

Dieser Ansatz basiert auf einer Reihe von Arbeiten, die von einigen an GEOMEC beteiligten Wissenschaftlern, insbesondere auch Ulrich Pinkall und Max Wardetzky, schon früher am MATHEON durchgeführt wurde. Einige dieser Forschungen stehen auch im Zusammenhang mit der Animation großer Kinofilme. Echtzeit–Simulationen flexibler Strukturen unter Berücksichtigung von physikalisch–funktionalem Verhalten haben bisher insbesondere in der Filmindustrie bahnbrechende Veränderungen bewirkt. So etwa bei der Animation virtueller Charaktere oder der realitätsnahen Simulation von Haar, Fell oder Stoff.

Doch auch außerhalb der Computergrafik besitzen die Methoden der Diskreten Differentialgeometrie ein weitreichendes Potential für industrielle Anwendungen. Beispiele hierfür sind der digitale Prototypenentwurf, die Montagesimulation oder die Bauraumsimulation im Automobilbau, die virtuelle Operationsplanung oder die Kathetersimulation in der Medizin, die Stoffsimulation und der virtuelle Laufsteg in der Modeindustrie, die Segelsimulation im Bootsbau, die Simulation flexibler Kabel und Schläuche im Maschinen- und Anlagenbau, die Rotorblattdynamik bei Hubschraubern in der Luftfahrt, aber auch die Simulation von Rotoren von Windturbinen, in Verbindung mit der Gesamtsystemsimulation mittels Methoden der Mehrkörperdynamik im Bereich der erneuerbaren Energien.

MATHEON-Professor Ulrich Pinkall betreut bei GEOMEC das Teilprojekt „Elastizität mit Diskreter Differentialgeometrie“. Weitere Teilprojekte werden von Prof. Marc Alexa, Technische Universität Berlin, Fakultät Elektrotechnik & Informatik, Prof. Arnd Meyer, Technische Universität Chemnitz, Fakultät für Mathematik, Juniorprof. Max Wardetzky, Georg–August–Universität Göttingen, Institut für Numerische und Angewandte Mathematik sowie Dr. Joachim Linn, Fraunhofer-Institut für Techno–und Wirtschaftsmathematik geleitet. Kooperationspartner ist die Volkswagen AG.

Weitere Auskünfte: Prof. Max Wardetzky, Tel: 0551 3922235, Email: wardetzky@math.uni-goettingen.de und Prof. Ulrich Pinkall, Tel.: 030 31424607, Email: pinkall@math.tu-berlin.de

Rudolf Kellermann | idw
Weitere Informationen:
http://www.matheon.de
http://www.math.tu-berlin.de/~pinkall/

Weitere Nachrichten aus der Kategorie Interdisziplinäre Forschung:

nachricht Speiseröhrenkrebs einfacher erkennen
06.03.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Neues Labor für die Aufbautechnik von ultradünnen Mikrosystemen
21.02.2017 | Hahn-Schickard

Alle Nachrichten aus der Kategorie: Interdisziplinäre Forschung >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Zweites Symposium 4SMARTS zeigt Potenziale aktiver, intelligenter und adaptiver Systeme

27.03.2017 | Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Kontinentalrand mit Leckage

27.03.2017 | Biowissenschaften Chemie

Das anwachsende Ende der Ordnung

27.03.2017 | Physik Astronomie

Einfluss der Sonne auf den Klimawandel erstmals beziffert

27.03.2017 | Geowissenschaften