Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Intelligente Roboter werden zu Mit-Arbeitern

04.11.2009
Exzellenzcluster CoTeSys: Kognitive Technologien für eine flexible Industrie

Die Fabrik der Zukunft sieht anders aus, als lange vermutet wurde. Nicht menschenleere Produktionshallen mit tumben, ewig das Gleiche verrichtenden Robotern, sondern die enge Zusammenarbeit von Mensch und Maschine sind das Ideal für eine wirtschaftliche und flexible Produktion.

Doch dazu sind die heutigen Industrie-Roboter technisch nicht in der Lage. Forscher des Exzellenzclusters CoTeSys (Cognition for Technical Systems) wollen das ändern. Im Projekt JAHIR (Joint Action for Humans and Industrial Robots) arbeiten sie an intelligenten, eigenständig entscheidenden Industrierobotern, die auf ihre menschlichen Partner eingehen, von ihnen lernen und sie bei vielfältigen Arbeiten unterstützen.

Roboter sind derzeit noch dumm. Ihre Stärke ist es, bestimmte Tätigkeiten wieder und wieder exakt, mit der ewig gleichen Bewegung auszuführen, ohne dass sie sich langweilen oder sie ermüden, Tag für Tag. Aber wofür sie dies tun, dass wissen sie nicht. Daher sind Roboter in der Industrie auch keineswegs ein Ersatz für Menschen. Denn der Mensch plant seine Handlungen und arbeitet auf ein Ziel hin. Wenn sich irgendetwas ändert, reagiert er sofort und versucht, auf einem anderen Weg zum Ziel zu kommen. Ständige Wiederholung dagegen langweilt ihn schnell.

Menschen und Roboter haben unterschiedliche Talente. Sie ergänzen sich ideal: Einerseits der Mensch, der die Richtung vorgibt, flexibel auf Überraschendes reagiert und mit seinem Fingerspitzengefühl und der Beweglichkeit seiner Hände auch feinste Arbeiten ausführen und überprüfen kann. Andererseits der Roboter, der nicht müde wird, ständig Handlangerdienste zu leisten, Bauteile zu reichen oder die fertigen Produkte auf Paletten zu stapeln – eben als Mit-Arbeiter im besten Sinn des Wortes, damit sich der Mensch auf das Wesentliche konzentrieren kann. Sie wären ein tolles Team, aber selbst für eine Zusammenarbeit sind Roboter heute zu dumm.

Diese Situation wollen die Forscher des Exzellenzclusters CoTeSys (Cognition for Technical Systems) in den nächsten Jahren entscheidend verändern. CoTeSys ist eine Zusammenarbeit von rund 100 Wissenschaftlern aus fünf Hochschulen und Forschungsinstituten im Raum München. Sie haben sich zusammengefunden, um Roboter selbstständiger zu machen, ihnen kognitive Fähigkeiten beizubringen, vom Erkennen ihrer Umgebung bis zum eigenständigen Wahrnehmen von Aufgaben. Die von der Technischen Universität München (TUM) koordinierte Kooperation wird im Rahmen der Exzellenzinitiative von Bund und Ländern mit insgesamt 28 Millionen Euro gefördert.

An den notwendigen Grundlagen für eine Zusammenarbeit von Menschen und Robotern arbeitet das Projekt JAHIR (Joint Action for Humans and Industrial Robots). Hier geht es um die Fähigkeiten, die ein Roboter braucht, um Menschen direkt bei ihrer Arbeit zu unterstützen. Das beginnt bei vorbereitenden Tätigkeiten, etwa dem Bereitlegen von Werkzeugen, führt über die maßgerechte Montage, etwa beim Befestigen von Schrauben mit festgelegter Drehkraft, bis hin zur Fähigkeit der Maschinen, aus ihren Beobachtungen und Handlungen zu lernen. „Unser Ziel“, so Professor Michael Zäh, Institutsleiter und Mitglied des CoTeSys Vorstands, „sind kognitive Roboter, die Hand in Hand mit Menschen zusammenarbeiten können, ohne Schutzzäune, wie sie heute noch notwendig sind. Dazu müssen die Roboter wissen, was sie tun, sozusagen ein Bewusstsein ihrer selbst entwickeln, ihre Arbeit selbstständig ausführen, den menschlichen Partner aufmerksam beobachten, sich in seine Lage versetzen und flexibel an seine Handlungen anpassen“.

Als wichtigste Voraussetzung für diese fruchtbare Zusammenarbeit von Mensch und Maschine gilt: Die Maschine darf den Menschen nicht gefährden. Das bedeutet in erster Linie, den Menschen bestenfalls berühren, wenn es für die Aufgabe notwendig ist, ansonsten Zusammenstöße vermeiden. Dazu muss der Roboter auch seine Umgebung bewusst wahrnehmen, eigene Positionsänderungen entsprechend planen, ja sogar mögliche Bewegungen des menschlichen Partners vorausahnen. Aber wie bewegt sich ein Mensch? Wodurch kündigt er an, dass und wie er sich bewegen wird? Offensichtlich tut er das, denn wenn Menschen miteinander arbeiten, haben sie normalerweise keine Probleme damit.

Menschen teilen ihre Absichten nicht nur durch Sprache mit. „Die robuste, durch Computer gestützte Erkennung nonverbaler Kommunikation ist bisher in der Wissenschaft noch nicht ausreichend erforscht worden“, erklärt Dr. Frank Wallhoff, Spezialist für Mensch-Maschine-Kommunikation und Projektleiter bei JAHIR. Ein Forschungsfeld im Rahmen von CoTeSys ist daher, wie diese Kommunikation ohne Worte im Arbeitsalltag vor sich geht. Dazu sitzen im CoTeSys Zentrallabor Probanden an Tischen und montieren kleine elektronische Schaltungen. Sie werden aus allen Blickrichtungen von Kameras beobachtet, sind mit medizinischen Sensoren bestückt und werden von einem Forscher unterstützt, der den Roboter spielt. Wie bewegen sich die Menschen? Welche Signale senden sie bewusst oder unbewusst an ihren Partner, bevor sie etwas tun? Wie äußern sich Erfolg, Unzufriedenheit oder Absichten in ihrem Blick, in ihrem Gesicht, in ihren Gesten, ja selbst bei Blutdruck und Hautfeuchtigkeit? Und in ihren Worten? Die Wissenschaftler suchen nach Signalen der Menschen, die kognitive Roboter identifizieren und interpretieren sollen, um dann ihr eigenes Verhalten darauf einzustellen.

Roboter haben sich in den letzten drei Jahrzehnten dort die Produktionshallen der Industrie erobert, wo Großserien vom Band laufen. Ohne die zuverlässigen Automaten würde heute kein Auto und kein Mobiltelefon mehr gebaut. Im Jahr 2011, so die European Robotics Technology Platform, werden weltweit 18 Millionen Roboter im Einsatz sein. Mit zunehmender Intelligenz erschließen sich für diese Maschinen immer neue Einsatzbereiche, etwa in der mittelständischen Industrie, wo einerseits keine Großserien produziert werden, so dass der hohe Aufwand für ständige Neuprogrammierung den Einsatz von Robotern verhindert, wo andererseits eine direkte Zusammenarbeit mit Menschen häufig erforderlich ist.

Kognitive Roboter, die nicht nur mit Menschen zusammenarbeiten, sondern auch selbstständig Aufgaben verstehen und in Handeln umsetzen, eröffnen der Industrie zusätzliche Flexibilität. In der CoTeSys-Modellfabrik arbeitet bereits ein regulärer Industrieroboter - mit kognitiven Fähigkeiten ausgestattet - mit den Forschern zusammen. Der Arbeitsplatz ist reich bestückt mit Kameras, die dem Roboter ein Bild von seiner unmittelbaren Umgebung vermitteln und auch von dem Menschen, mit dem er zusammenarbeitet. Infrarot-Tiefenbildkamera, Videokamera und Laserscanner zeigen der elektronischen Steuerung, wo sich der Mensch befindet, was er mit seinen Händen macht, wo die Werkstücke auf dem Arbeitstisch liegen. Eine mächtige Datenbrille auf dem Kopf des Forschers übermittelt, wohin er schaut, ein Mikrofon nimmt gesprochene Anweisungen auf. Martin Ostgathe, Doktorand und ebenfalls Projektleiter in der Modellfabrik, erklärt: „Der Roboter schließt daraus selbstständig, wie der Stand der Montage ist, welche Bauteile als nächstes gebraucht werden, ja auch, ob sein menschlicher Partner vom Montageplan abgewichen ist. Daraus zieht er seine Schlüsse, bereitet die nächsten passenden Teile vor oder greift nach dem Elektroschrauber, um das Werkstück zuzuschrauben, sobald der Wissenschaftler es ihm hinhält.“

Hinter der scheinbar so mühelosen Zusammenarbeit steckt ein enormer technischer Aufwand. Allein Software und Computertechnik reizen die Grenzen des heute Machbaren aus. Denn alle Berechnungen, Abschätzungen und Steuerungen müssen in Echtzeit stattfinden. Pausen, die entstehen könnten, bis die Robotersteuerung gerechnet hat, sind nicht akzeptabel. Und selbst auf kleinste Veränderungen, etwa eine kurze Bewegung des Menschen, muss die Elektronik schon aus Sicherheitsgründen sofort reagieren. Daneben soll der Roboter lernen, aus neuen Situationen Regeln für künftiges Handeln zu gewinnen. Ein Nebeneffekt seiner kognitiven Fähigkeiten ist auch, dass die Programmierung dieses Roboters wesentlich schneller geht, denn nun muss nicht jede Eventualität im Arbeitsleben des Roboters mühsam vorausgedacht und programmiert werden.

Eines wird deutlich: Um Roboter zu Mit-Arbeitern des Menschen zu machen, sind viele wissenschaftlichen Disziplinen gefordert, von der Elektrotechnik bis zur Hirnforschung, von der Arbeitsorganisation über den Maschinenbau bis zur Informatik. Hauptaufgabe des Exzellenzclusters CoTeSys ist es, sie zusammenzuführen und auf das gemeinsame Ziel auszurichten.

Kontakt und weitere Informationen
Dr. Uwe Haass
Geschäftsführer CoTeSys
CCRL – CoTeSys Central Robotics Laboratory
Technische Universität München
Barer Straße 21, 80290 München
CoTeSys – Cognition for Technical Systems
Tel. +49 89 289 25 723
E-Mail: gst@cotesys.org

Markus Bernards | Technische Universität München
Weitere Informationen:
http://www.cotesys.org
http://www.tum.de

Weitere Nachrichten aus der Kategorie Interdisziplinäre Forschung:

nachricht Neues Verbundprojekt erforscht die neurodegenerative Erkrankung Morbus Alzheimer
12.09.2017 | Universitätsklinikum Würzburg

nachricht Damit sich Mensch und Maschine besser verstehen
04.09.2017 | Technische Universität Chemnitz

Alle Nachrichten aus der Kategorie: Interdisziplinäre Forschung >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantensensoren entschlüsseln magnetische Ordnung in neuartigem Halbleitermaterial

Physiker konnte erstmals eine spiralförmige magnetische Ordnung in einem multiferroischen Material abbilden. Diese gelten als vielversprechende Kandidaten für zukünftige Datenspeicher. Der Nachweis gelang den Forschern mit selbst entwickelten Quantensensoren, die elektromagnetische Felder im Nanometerbereich analysieren können und an der Universität Basel entwickelt wurden. Die Ergebnisse von Wissenschaftlern des Departements Physik und des Swiss Nanoscience Institute der Universität Basel sowie der Universität Montpellier und Forschern der Universität Paris-Saclay wurden in der Zeitschrift «Nature» veröffentlicht.

Multiferroika sind Materialien, die gleichzeitig auf elektrische wie auch auf magnetische Felder reagieren. Die beiden Eigenschaften kommen für gewöhnlich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungen

Biowissenschaftler tauschen neue Erkenntnisse über molekulare Gen-Schalter aus

19.09.2017 | Veranstaltungen

Zwei Grad wärmer – und dann?

19.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungsnachrichten

Zentraler Schalter der Immunabwehr gefunden

19.09.2017 | Biowissenschaften Chemie

Neue Materialchemie für Hochleistungsbatterien

19.09.2017 | Biowissenschaften Chemie