Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Innsbrucker Forscherteam entwickelt innovative Linse mit einstellbarer Brennweite

19.01.2011
Ausgezeichneter Technologietransfer

Univ.-Prof. Stefan Bernet, Wissenschafter an der von Univ.-Prof.in Monika Ritsch-Marte geführten Sektion für Biomedizinische Physik der Medizinischen Universität Innsbruck, erhält für sein Projekt „Varifokale DOE-Optiken“ den hoch dotierten PRIZE 2010. Diese von der Austria Wirtschaftsservice GmbH (AWS) vergebene Prototypenförderung unterstützt die effiziente Verwertung von zukunftsorientierten Erfindungen und damit auch den Wissenstransfer von der Forschung in die Wirtschaft. Ziel des ausgezeichneten Entwicklungsprojektes ist es, neuartige optische Linsen herzustellen, deren Brennweite sich kontinuierlich ändern läßt. Damit könnte ein breiter Markt bedient werden.


Skizze einer varifokalen DOE Linse, die nun als Prototyp entwickelt werden soll. Bildrechte: Medizinische Universität Innsbruck


In diesem Labor der Sektion für Biomedizinische Physik wird der neue Prototyp entwickelt. Bildrechte: Medizinische Universität Innsbruck

DOE steht für „Diffraktive Optische Elemente“ und bezeichnet Linsen, die sich für die Konstruktion von Abbildungssystemen eignen, die wie das menschliche Auge funktionieren. Und genau darauf zielt das Projekt von Prof. Bernet und Prof.in Ritsch-Marte ab. „Die Fokussierung wird also nicht wie in üblichen Kamerasystemen durch die Verschiebung einer Linse erreicht, sondern wie im natürlichen Auge durch Änderung der Linsenbrennweite. Das bei Zoomobjektiven bekannte Aus- und Einfahren des Objektivs wäre hier nicht mehr nötig.“, erklärt Medizinphysiker Bernet, der nun vor der Aufgabe steht, im Rahmen von ein bis zwei Jahren einen entsprechenden Prototyp zu entwickeln, der dann in breiter Verfügbarkeit herkömmliche Optiken wesentlich verbessern wird.

Linse mit variabler Brennweite
Die neuartige Technik beruht auf einer Idee, die kürzlich von der Medizinischen Universität Innsbruck mit Hilfe von Dr. Peter Buchberger von der Firma transidee patentiert wurde. „Eine DOE-Linse besteht aus zwei kombinierten Bauteilen beziehungsweise aus zwei identischen, transparenten Glas- oder Kunststoffscheibchen, in die eine speziell berechnete holografische Mikrostruktur eingeprägt ist, so dass sie als sogenannte diffraktive optische Elemente wirken. Diese Plättchen werden direkt aneinanderliegend montiert, so dass sie sich um eine gemeinsame zentrale Achse drehen lassen. Die eingeprägte Mikrostruktur bewirkt dann, dass das kombinierte Plättchen für durchfallendes Licht wie eine optische Linse (eine sogenannte Zonenplatte, oder auch Fresnel-Linse) wirkt“, erklärt Prof. Bernet die Details. Im Gegensatz zu den bereits bekannten diffraktiven Linsen läßt sich nun allerdings die Brennweite der kombinierten „varifokalen DOE-Linse“ durch Verdrehung eines der Plättchen in einem weiten Bereich kontinuierlich verändern, wobei der sogenannte Moiré-Effekt ausgenützt wird.
Hoher Bedarf bei niedrigen Herstellungskosten
Andere technische Ansätze zur Erzeugung von Linsen mit variabler Brennweite werden zwar seit kurzem erprobt, zeigen jedoch Defizite in der technischen Umsetzbarkeit und eignen sich nur für kleine Linsendurchmesser. „Die Vorteile der geplanten varifokalen DOE Linsen liegen zudem in ihrem geringen Gewicht - sie sind wesentlich dünner und leichter als Glaslinsen - und besonders preisgünstigem Herstellungsmodalitäten im Rahmen einer industriellen Produktion“, betont Prof. Bernet. Nach Abschluss der erfolgreichen Prototypenentwicklung ist für die neuartige Linse mit einem hohen Bedarf in verschiedensten Bereichen der technischen Optik zu rechnen, etwa für Standardobjektive und Zoomoptiken für Digitalkameras, für Teleskope, für flexible Versuchsaufbauten in technischen Labors, als Einkopplungsoptiken in der Lichtleitertechnologie oder für adaptive Beleuchtungssysteme.
Förderung innovativer Wissenschaft
Im Rahmen des vom Bundesministerium für Wirtschaft, Familie und Jugend und dem Bundesministerium für Wissenschaft und Forschung getragenen universitären Patent- und Lizenzierungsprogramms uni:invent unterstützt die aws (Austria Wirtschaftsservice GmbH) österreichische Universitäten bei der Bewertung, Patentierung und Verwertung von Erfindungen. Die aws zeichnete 2010 im Auftrag des Wirtschaftsministeriums acht von 34 eingereichten universitären Entwicklungsprojekten mit Fördermitteln aus.

Die Sektion für Biomedizinische Physik an der Medizinischen Universität Innsbruck betreibt anwendungsorientierte Grundlagenforschung mit dem Ziel der Entwicklung von neuen physikalischen Methoden und Technologien in Medizin und Zellbiologie. Der Tätigkeitsbereich der Medizin-Physiker ist daher breit gefächert und reicht von der Grundlagenforschung an den Prozessen des Lebens bis hin zur Diagnose und Therapie von Krankheiten.

Links:

Sektion für Biomedizinische Physik
http://www2.i-med.ac.at/medphysik/
Austria Wirtschaftsservice (aws)
http://www.awsg.at/Content.Node/
Patent- und Lizensierungsprogramm uni:invent
http://www.uniinvent.at/

Details zur Medizinischen Universität Innsbruck
Die Medizinische Universität Innsbruck mit ihren rund 1.800 MitarbeiterInnen und ca. 2.800 Studierenden ist gemeinsam mit der Universität Innsbruck die größte Bildungs- und Forschungseinrichtung in Westösterreich und versteht sich als Landesuniversität für Tirol, Vorarlberg, Südtirol und Liechtenstein. An der Medizinischen Universität Innsbruck werden drei Studienrichtungen angeboten: Humanmedizin und Zahnmedizin als Grundlage einer akademischen medizinischen Ausbildung und das PhD-Studium (Doktorat) als postgraduale Vertiefung des wissenschaftlichen Arbeitens. Neu im Studienplan ab Herbst 2011 ist das Bachelor-Studium der Molekularen Medizin.

Die Medizinische Universität Innsbruck ist in zahlreiche internationale Bildungs- und Forschungsprogramme sowie Netzwerke eingebunden. In der Forschung liegen die Schwerpunkte im Bereich der Molekularen Biowissenschaften (u.a. bei dem Spezialforschungsbereich „Zellproliferation und Zelltod in Tumoren“, Proteomik-Plattform), der Neurowissenschaften, der Krebsforschung sowie der molekularen und funktionellen Bildgebung. Darüber hinaus ist die wissenschaftliche Forschung an der Medizinischen Universität Innsbruck in der hochkompetitiven Forschungsförderung sowohl national auch international sehr erfolgreich.

Für Rückfragen

ao.Univ.-Prof. Dr. Stefan Bernet
Sektion für Biomedizinische Physik
Müllerstraße 44
Medizinische Universität Innsbruck
Tel.: +43 512 9003 70880
E-Mail: Stefan.Bernet@i-med.ac.at
Öffentlichkeitsarbeit
Mag.a Doris Heidegger
(Leiterin Mag.a Amelie Döbele)
Medizinische Universität Innsbruck
Innrain 52, 6020 Innsbruck, Austria
Telefon: +43 512 9003 70083
doris.heidegger@i-med.ac.at
public-relations@i-med.ac.at

Doris Heidegger | Uni Innsbruck
Weitere Informationen:
http://www.i-med.ac.at

Weitere Nachrichten aus der Kategorie Interdisziplinäre Forschung:

nachricht Lösung gegen Schwefelsäureangriff auf Abwasseranlagen
23.02.2018 | Technische Universität Graz

nachricht Forschende der Uni Kiel entwickeln extrem empfindliches Sensorsystem für Magnetfelder
15.02.2018 | Christian-Albrechts-Universität zu Kiel

Alle Nachrichten aus der Kategorie: Interdisziplinäre Forschung >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics