Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Guter Halt auf rutschigem Untergrund

18.12.2013
Kieler Wissenschaftler untersuchen Haftungsmöglichkeiten in Fließgewässern

Es ist ein altbekanntes Problem: Wenn sich auf Steinen und Geröll in Flüssen Algen gebildet haben, werden sie extrem rutschig. Wissenschaftlerinnen und Wissenschaftler der Christian-Albrechts-Universität zu Kiel (CAU) haben nun herausgefunden, dass dieser Effekt umgekehrt für sehr kleine Tiere gilt.

Der Biofilm, wie der schleimige Film aus Algen, Bakterien und anderem organischen Material auf dem Substrat genannt wird, bietet kleinen Tieren wie Insekten und deren Larven zusätzlichen Halt. Besonders in Fließgewässern wie Bächen und Flüssen ist dies für die Besiedlung glatter strömungsexponierter Habitate durch die Tiere entscheidend.

Die Forschungsergebnisse wurden am Mittwoch, 18. Dezember, im renommierten Wissenschaftsmagazin „Journal of the Royal Society Interface“ veröffentlicht.

In einer Versuchsreihe mit den Larven der Eintagsfliege Epeorus assimils konnte das Forscherteam, bestehend aus dem Biophysiker Alexander Kovalev, den Biologen Stanislav Gorb, Jan Michels, Jochen Koop und Petra Ditsche, dass die Insekten vom Biofilm nicht nur als Futterquelle abhängig sind. Denn wo Menschen und Fahrzeuge extreme Schwierigkeiten mit der Haftung bekommen, kommen die Haftungsmechanismen der Insekten zum Einsatz.
Auf teils sehr glatten Oberflächen von Steinen finden die mit Krallen bewehrten Larven schwerlich Halt, die weiche Schleimschicht des Biofilms ist von ihnen jedoch einfach durchdringbar, so dass die Krallen sich an innerhalb des Biofilms befindlichen, festverwachsenen Organismen verklammern können. Durch die hohe Viskosität des Biofilms wird der Widerstand der Insekten gegen die Strömung weiter gestärkt. „Etwa so, als wenn man seine Füße in Honig hätte“, beschreibt Dr. Petra Ditsche von der Arbeitsgruppe Funktionelle Morphologie und Biomechanik an der CAU das Phänomen.

Die Methode:
Im Labor wurden künstliche Substrate mit verschiedenen Rauheitsgraden hergestellt, die von sehr glatt bis extrem rau reichten. Einen Teil dieser Substrate haben die Forschenden in einer Fließrinne mit Biofilm bewachsen lassen. In den folgenden Versuchen wurden die bewachsenen Substrate mit den jeweils gleichen Substrattypen ohne Biofilmbewuchs verglichen. Zur Bestimmung der Oberflächenstruktur wurden mittels Konfokaler Laser Scanning Mikroskopie (CLSM) die Oberflächen vermessen sowie Rauheitsparameter berechnet.

Indentationsmessungen wurden zur Bestimmung der biophysikalischen Eigenschaften des Biofilms wie Elastizität und Härte vorgenommen.

Die Haltefähigkeiten der lebenden Larven wurden dann in einer künstlichen Fließrinne bei steigenden Geschwindigkeiten untersucht. Dabei wurde die Maximalgeschwindigkeit ermittelt, bis zu der die Larven auf dem spezifischen Substrat verbleiben konnten. Zusätzlich wurden Versuche zur Bestimmung der Haltekräfte der Krallen (Reibung und Verklammerung) durchgeführt. Dazu haben die Forschenden Krallenpräparate an einem speziellen Kraftsensor befestigt und die Krallen in natürlicher Position mit Hilfe eines Mikromanipulators parallel zum jeweiligen Substrat gezogen.

Die Ergebnisse:
Die Untersuchungen zeigen, dass es generell wichtig ist, den Biofilm bei der Haftung in aquatischen Systemen zu berücksichtigen, da er die Substrateigenschaften wesentlich verändert. Im Fall der untersuchten Eintagsfliegenlarven waren die Haftkräfte auf den mit Biofilm überzogenen Substraten auf den meisten Substraten erhöht. Dies war auf allen glatten Substraten sowie auf den Substraten geringer Rauheit der Fall, auf welchen die Krallen schwerlich genug Unregelmäßigkeiten zur Verklammerung finden. Der Biofilm sollte daher generell als Faktor bei der Haftung/Befestigung am Untergrund berücksichtigt werden. Dies gilt nicht nur für sessile Organismen, sondern auch für mobile, also freibewegliche Tiere.

Anwendung finden die Forschungsergebnisse möglicherweise in der Antifouling-Forschung, die den Bewuchs an Schiffsrümpfen und anderen technischen Oberflächen verhindern soll, oder bei der Entwicklung von Unterwasserhaftsystemen für technische Geräte wie Strömungsmesser.

Weiterführende Links:
Arbeitsgruppe Funktionelle Morphologie und Biomechanik am Zoologischen Institut
www.uni-kiel.de/zoologie/gorb/

Journal of the Royal Society Interface:
http://rsif.royalsocietypublishing.org/content/11/92/20130989.abstract?sid=a6abf5c6-cac7-4b8a-a885-248162daec60

Zwei Fotos stehen zum Download bereit:
1. www.uni-kiel.de/download/pm/2013/2013-391-1.jpg
BU: Rasterelektronenmikroskop-Aufnahme der Klaue eines E. assimilis Vorderbeins. Foto/Copyright: Petra Ditsche

2. www.uni-kiel.de/download/pm/2013/2013-391-2.jpg
BU: Unterwasseraufnahme einer E. Assimilis Larve. Foto/Copyright: Petra Ditsche

Kontakt:
Dr. Petra Ditsche
Friday Harbor Laboratories
University of Washington
620 University Road
Friday Harbor, WA, 98250
USA
phone: +1-360-298-2284 (9 Stunden Zeitverschiebung)
E-Mail: pditsche@UW.edu, pditschekuru@zoologie.uni-kiel.de

Prof. Dr. Stanislav Gorb
Funktionelle Morphologie und Biomechanik
Zoologisches Institut
Christian-Albrechts-Universität zu Kiel
Am Botanischen Garten 1-9
24118 Kiel
Tel.: 0431/880 4859
E-Mail: sgorb@zoologie.uni-kiel.de

Originalarbeit:
Ditsche P, Michels J, Kovalev A, Koop J, Gorb S. 2014 More than just slippery: the impact of biofilm on the attachment of non-sessile freshwater mayfly larvae. J. R. Soc. Interface 20130989.

Sebastian Maas | Christian-Albrechts-Universität
Weitere Informationen:
http://www.uni-kiel.de

Weitere Nachrichten aus der Kategorie Interdisziplinäre Forschung:

nachricht Mit Nanopartikel-Tandems gegen den Herzinfarkt
01.12.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Virtuelle Realität für Bakterien
01.12.2017 | Institute of Science and Technology Austria

Alle Nachrichten aus der Kategorie: Interdisziplinäre Forschung >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lange Speicherung photonischer Quantenbits für globale Teleportation

Wissenschaftler am Max-Planck-Institut für Quantenoptik erreichen mit neuer Speichertechnik für photonische Quantenbits Kohärenzzeiten, welche die weltweite...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Materialinnovationen 2018 – Werkstoff- und Materialforschungskonferenz des BMBF

13.12.2017 | Veranstaltungen

Innovativer Wasserbau im 21. Jahrhundert

13.12.2017 | Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rest-Spannung trotz Megabeben

13.12.2017 | Geowissenschaften

Computermodell weist den Weg zu effektiven Kombinationstherapien bei Darmkrebs

13.12.2017 | Medizin Gesundheit

Winzige Weltenbummler: In Arktis und Antarktis leben die gleichen Bakterien

13.12.2017 | Geowissenschaften