Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Grundlage für neuartige Solarzellen

25.01.2017

Internationales Wissenschaftlerteam entwickelt neuen Wirkmechanismus für Photovoltaik

Ein interdisziplinäres Forscherteam hat die Grundlagen für einen völlig neuen Typus von Solarzellen entwickelt. Die neue Methode wandelt jenseits der herkömmlichen Wirkmechanismen Infrarotlicht in elektrische Energie um. Der Wirkmechanismus der Festkörper-Solarzelle besteht aus dem Mineral Perowskit und beruht auf sogenannten Polaron-Anregungen.


Foto der Polaron Solarzelle bei Laboruntersuchungen: Schwarz ist der Manganat Absorber-Film mit heißen Polaron Anregungen. Foto: Universität Göttingen / MPIbpC / DESY


Kristallstruktur des Perowskit Absorbers der Solarzelle. Abbildung: Universität Göttingen / MPIbpC / DESY

Das sind kombinierte Anregungen von Elektronen und Gitterschwingungen des Festkörpers. Beteiligt an der Entwicklung der neuartigen Methode sind Forscher der Universität Göttingen, des Göttinger Max-Planck-Instituts für biophysikalische Chemie, der Technischen Universität Clausthal und vom Deutschen Elektronen-Synchrotron (DESY) in Hamburg. Die Ergebnisse sind in der Fachzeitschrift Advanced Energy Materials erschienen.

„Während in konventionellen Solarzellen die Wechselwirkung von Elektronen mit Gitterschwingungen zu unerwünschten Verlusten führt und daher ein wesentliches Problem darstellt, können diese Polaron-Anregungen in der Perowskit-Solarzelle bei bestimmten Betriebstemperaturen fraktal gebildet und langlebig genug werden, damit ein ausgeprägter photovoltaischer Effekt auftritt“, erläutert Erstautor Dirk Raiser vom MPI für biophysikalische Chemie und vom DESY.

„Dies erfordert jedoch einen geordneten Grundzustand der Ladungen, der einer Art Kristallisation der Ladungen entspricht und so starke kooperative Wechselwirkungen der Polaronen ermöglicht.“

Die untersuchten Perowskit-Solarzellen mussten im Labor auf etwa minus 35 Grad Celsius gekühlt werden, damit der Effekt einsetzte. Voraussetzung für eine praktische Anwendung ist die Realisation geordneter Polaronenzustände bei höheren Temperaturen.

„Die vorliegenden Messungen wurden an einem gut charakterisierten Referenzmaterial durchgeführt, um das Prinzip des Effektes zu verdeutlichen. Dafür wurde die tiefe Übergangstemperatur in Kauf genommen“, erläutert Ko-Autorin Prof. Dr. Simone Techert vom Institut für Röntgenphysik der Universität Göttingen, die auch leitende Wissenschaftlerin am MPI für biophysikalische Chemie und am DESY ist.

Göttinger Materialphysiker arbeiten an einer Modifizierung und Optimierung des Materials, um eine höhere Betriebstemperatur zu erreichen. „Der kooperative Zustand könnte sich unter Umständen auch durch geschickte Anregung mit weiterem Licht vorübergehend einstellen lassen“, sagt Prof. Techert. Sofern eine dieser Strategien erfolgreich ist, könnten zukünftig Solarzellen oder photochemische Energieträger mittels reichlich vorhandener Perowskit-Oxidverbindungen erzeugt werden.

„Die Entwicklung hocheffizienter und einfach gebauter Festkörper-Solarzellen ist immer noch eine wissenschaftliche Herausforderung, der sich viele Arbeitsgruppen auf der Welt stellen, um die künftige Energieversorgung zu gewährleisten“, betont Forschungsleiter Prof. Dr. Christian Jooß vom Institut für Materialphysik der Universität Göttingen. „Neben der Material- oder Bauoptimierung schon etablierter Solarzellen beinhaltet dies auch die Erforschung neuer grundlegender Mechanismen des lichtinduzierten Ladungstransports und der Umwandlung in elektrische Energie. Auf diese Weise sollte es möglich sein, Solarzellen basierend auf neuen Wirkprinzipien zu entwickeln.“

Genau dies ist der interdisziplinären Gruppe von Materialphysikern, Theoretikern, chemischen Physikern und Röntgenphysikern nun im Rahmen des Göttinger Sonderforschungsbereichs (SFB) 1073 „Kontrolle der Energiewandlung auf atomaren Skalen“ gelungen. Für die Erforschung der neuartigen Solarzellenfunktion waren dabei ultraschnelle optische und strukturelle Analysemethoden entscheidend, wie sie in aktuellen und früheren Arbeiten zu diesem Thema zum Einsatz kamen.

Im Zentrum in Göttingen steht dabei die Entwicklung von Materialien, deren Anregungen sich mittels starker Wechselwirkungen steuern lassen. Die Materialentwicklung wird im Rahmen des SFB 1073 durch die theoretischen Arbeiten von Prof. Dr. Peter Blöchl von der Technischen Universität Clausthal intensiv begleitet. Sie erlauben, ein fundamentales Verständnis der neuen Wirkmechanismen zu entwickeln und damit das Design neuer Materialen zielgerichtet durchzuführen.

Originalveröffentlichung: Dirk Raiser et al. Evolution of hot polaron states with a nanosecond lifetime in manganite. Advanced Energy Materials. DOI: 10.1002/aenm.201602174; http://onlinelibrary.wiley.com/doi/10.1002/aenm.201602174/full

Hinweis an die Redaktionen:
Fotos zum Thema haben wir im Internet unter http://www.uni-goettingen.de/de/3240.html?cid=5729 zum Download bereitgestellt.

Kontaktadresse:
Prof. Dr. Christian Jooß
Georg-August-Universität Göttingen
Fakultät für Physik – Institut für Materialphysik
Friedrich-Hund-Platz 1, 37077 Göttingen
Telefon (0551) 39-5303
E-Mail: jooss@ump.gwdg.de
Internet: http://www.material.physik.uni-goettingen.de/index.php?site=jooss_info

Weitere Informationen:

http://www.uni-goettingen.de/de/3240.html?cid=5729
http://onlinelibrary.wiley.com/doi/10.1002/aenm.201602174/full

Thomas Richter | Georg-August-Universität Göttingen

Weitere Nachrichten aus der Kategorie Interdisziplinäre Forschung:

nachricht Neues Verbundprojekt erforscht die neurodegenerative Erkrankung Morbus Alzheimer
12.09.2017 | Universitätsklinikum Würzburg

nachricht Damit sich Mensch und Maschine besser verstehen
04.09.2017 | Technische Universität Chemnitz

Alle Nachrichten aus der Kategorie: Interdisziplinäre Forschung >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Höher - schneller - weiter: Der Faktor Mensch in der Luftfahrt

20.09.2017 | Veranstaltungen

Wälder unter Druck: Internationale Tagung zur Rolle von Wäldern in der Landschaft an der Uni Halle

20.09.2017 | Veranstaltungen

7000 Teilnehmer erwartet: 69. Urologen-Kongress startet heute in Dresden

20.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Drohnen sehen auch im Dunkeln

20.09.2017 | Informationstechnologie

Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen

20.09.2017 | Biowissenschaften Chemie

Frühwarnsystem für gefährliche Gase: TUHH-Forscher erreichen Meilenstein

20.09.2017 | Energie und Elektrotechnik