Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Glukose-Brennstoffzelle soll Implantate befeuern

14.06.2012
MIT-Erfindung setzt auf herkömmliche Halbleiter-Technologie

Forscher des Massachusetts Institute of Technology (MIT) http://mit.edu haben eine Brennstoffzelle entwickelt, die aus Glucose Energie gewinnt.


Glucose-Chip: MIT-Erfindung macht Zucker zu Strom (Foto: MIT)

Diese könnte künftig in das Gehirn eingesetzt werden und für den Antrieb von Prothesen und anderen Hilfsmitteln verantwortlich sein. Große Hoffnug ruht dabei in der Verwendung der cerebrospinalen Flüssigkeit.

Ideen-Revival nach 40 Jahren

Die Idee, den Zuckergehalt von Flüssigkeiten im menschlichen Körper zur Stromerzeugung zu verwenden, ist nicht ganz neu. Schon in den 1970er-Jahren ist es Wissenschaftlern geglückt, auf Basis einer Glucose-Brennstoffzelle einen Herzschrittmacher zu betreiben.

Mit dem Siegeszug der Lithium-Ionen-Akkus wandte man dieser Technologie jedoch für längere Zeit den Rücken zu. Zudem arbeiteten die damaligen Konstrukte mit Enzymen, was sie für einen Langzeitbetrieb untauglich machte.

Nun hat man am MIT die Idee auf Basis konventioneller Halbleiter-Technik wieder zum Leben erweckt. Alle Komponenten befinden sich auf einem Silizium-Chip. Ein Platin-Katalysator zieht, ähnlich wie verschiedene Zellenzyme, Ionen aus der Glucose. Platin gilt als biokompatibel, der Prototyp der Brennstoffzelle kann bereits einige hundert Mikrowatt an Strom erzeugen, was für den Betrieb von Low-Power-Gehirnimplantaten bereits ausreichend ist.

Cerebrospinale Flüssigkeit als ideales Milieu

"Es wird noch ein paar Jahre dauern, bevor Menschen mit Rückenmarksverletzungen im Rahmen von Standardbehandlungen mit solchen Implantaten ausgestattet werden, aber das ist die Art von Geräten, die man mit einer Glukose-basierten Brennstoffzelle antreiben kann", so Benjamin Rapoport, der erste Studienautor des von Rahul Sarpeshkar geleiteten Projektes.

Seinen Berechnungen nach ist die Rückenmarks-Gehirnflüssigkeit, die Erschütterungen des Denkorgans vermindert und es vor Kollisionen mit dem Schädelknochen schützt, die ideale Umgebung für die Brennstoffzelle. Denn sie zirkuliert ständig und verfügt über einen hohen Glucosegehalt.

Gleichzeitig befinden sich in ihr nur wenige Zellen, was eine Immunreaktion sehr unwahrscheinlich macht. Da nur ein geringer Teil des Zuckergehalts verwendet wird, ist laut den Forschern auch nicht von einem nennenswerten Einfluss auf die Hirnaktivität auszugehen.

Das Paper zur Studie haben die MIT-Wissenschaftler mittlerweile im Journal "PLoS ONE" veröffentlicht: http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0038436

Georg Pichler | pressetext.redaktion
Weitere Informationen:
http://www.mit.edu

Weitere Nachrichten aus der Kategorie Interdisziplinäre Forschung:

nachricht Neues Verbundprojekt erforscht die neurodegenerative Erkrankung Morbus Alzheimer
12.09.2017 | Universitätsklinikum Würzburg

nachricht Damit sich Mensch und Maschine besser verstehen
04.09.2017 | Technische Universität Chemnitz

Alle Nachrichten aus der Kategorie: Interdisziplinäre Forschung >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die schnellste lichtgetriebene Stromquelle der Welt

Die Stromregelung ist eine der wichtigsten Komponenten moderner Elektronik, denn über schnell angesteuerte Elektronenströme werden Daten und Signale übertragen. Die Ansprüche an die Schnelligkeit der Datenübertragung wachsen dabei beständig. In eine ganz neue Dimension der schnellen Stromregelung sind nun Wissenschaftler der Lehrstühle für Laserphysik und Angewandte Physik an der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) vorgedrungen. Ihnen ist es gelungen, im „Wundermaterial“ Graphen Elektronenströme innerhalb von einer Femtosekunde in die gewünschte Richtung zu lenken – eine Femtosekunde entspricht dabei dem millionsten Teil einer milliardstel Sekunde.

Der Trick: die Elektronen werden von einer einzigen Schwingung eines Lichtpulses angetrieben. Damit können sie den Vorgang um mehr als das Tausendfache im...

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Im Spannungsfeld von Biologie und Modellierung

26.09.2017 | Veranstaltungen

Archaeopteryx, Klimawandel und Zugvögel: Deutsche Ornithologen-Gesellschaft tagt an der Uni Halle

26.09.2017 | Veranstaltungen

Unsere Arbeitswelt von morgen – Polarisierendes Thema beim 7. Unternehmertag der HNEE

26.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Europas erste Testumgebung für selbstfahrende Züge entsteht im Burgenland

26.09.2017 | Verkehr Logistik

Nerven steuern die Bakterienbesiedlung des Körpers

26.09.2017 | Biowissenschaften Chemie

Mit künstlicher Intelligenz zum chemischen Fingerabdruck

26.09.2017 | Biowissenschaften Chemie