Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie unser Gehirn entsteht

29.10.2012
Es ist eine zentrale Frage rund um die Spezies Mensch: Wie kommt es, dass wir denken? Und wie entsteht dieses Organ, mit dem wir es tun: unser Gehirn?

Ein Forscherteam der Universität Leipzig hat sich dieser Frage angenommen und sogenannte "neuronale Wachstumskegel" näher untersucht, die dabei eine besondere Rolle spielen. Veröffentlicht haben Thomas Fuhs, Lydia Reuter und Iris Vonderhaid aus der Arbeitsgruppe von Professor Josef A. Käs, tätig in der Abteilung Physik weicher Materie an der Fakultät für Physik und Geowissenschaften, sowie Professor Dr. Thomas Claudepierre, Klinik und Poliklinik für Augenheilkunde am Universitätsklinikum Leipzig, ihre Ergebnisse jetzt in einem Artikel in der renommierten Fachzeitschrift „Cytoskeleton“. Er ist seit wenigen Tagen online und wird in Kürze auch im Heft erscheinen.

Das Säugetiergehirn beginnt seine Entwicklung nicht als vernetztes Gebilde. Die einzelnen Nervenzellen vernetzen sich erst im Laufe der Zeit. Hierzu senden die Nervenzellen Neurite aus. Wenn sich zwei Neurite treffen, können sie eine Synapse bilden und so eine Verbindung zwischen den beiden Nervenzellen herstellen. An der Spitze jedes wachsenden Neurits befindet sich ein "Wachstumskegel".

Die Forschergruppe um Thomas Fuhs hat besonders die Frage interessiert, wie stark so ein Wachstumskegel ist. Welche Hindernisse kann er aus dem Weg schieben, und wann scheitert er? Dazu haben sie den Wachstumskegeln "Hindernisse" in den Weg gesetzt, die mit der Tastfeder eines Rasterkraftmikroskops verbunden sind. Wenn der Wachstumskegel weiter wächst, drückt er gegen das Hindernis - und diese Kraft lässt sich mit dem Rasterkraftmikroskop aufzeichnen. Um gegen ein Hindernis drücken zu können, muss sich der Wachstumskegel am Substrat festhalten und steif genug sein, um nicht zwischen Hindernis und Substrat zerquetscht zu werden.

Die Ergebnisse zeigen, dass Wachstumskegel des zentralen Nervensystems im Vergleich zu anderen Zellen geringere Kräfte erzeugen. Darüber hinaus sind sie deutlich weicher als die meisten anderen Zellen, wie etwa Fibroblasten oder Endothelzellen. Wieso haben aber grade diese Zellen, die für die Steuerung des ganzen Organismus verantwortlich sind, so schlechte Karten wenn es darum geht, ihr Ziel zu erreichen? Es könnte zu ihrem eigenen Schutz sein. Denn ihre normale Umgebung im Gehirn besteht aus ebenfalls sehr weichen Gliazellen. In dieser weichen Umgebung sind die erzeugten Kräfte dann wieder ausreichend. Zum anderen ist das Gehirn von Blutgefäßen durchzogen, in diese sollten sich die Neuriten nicht verirren.

Die Wände von Blutgefäßen im Hirn sind über eine Größenordnung steifer als Wachstumskegel, und damit für diesen quasi undurchdringlich. Nachteilig kann sich die Schwäche der Wachstumkegel allerdings auswirken, wenn sich geschädigtes Gewebe in Folge einer Verletzung verhärtet.

Dieser Aspekt hat in der bisherigen Forschung zur Neuroregeneration praktisch keine Rolle gespielt. Nun hofft die Forschergruppe, mit ihrer Arbeit ein weiteres Puzzleteil bei der Antwort auf die Frage, wie unser Gehirn entsteht, hinzufügen zu können. Und vielleicht hilft das beim Verständnis, warum sich das zentrale Nervensystem nach Verletzungen nicht regeneriert.

Weitere Informationen:
Prof. Dr. Josef A. Käs
Telefon: +49 341 97-32470
E-Mail: jkaes@physik.uni-leipzig.de
www.uni-leipzig.de/~pwm
Thomas Fuhs
Physik weicher Materie
Telefon: +49 341 97-32486
E-Mail: TFuhs@physik.uni-leipzig.de
www.uni-leipzig.de/~pwm

Ronny Arnold | Universität Leipzig
Weitere Informationen:
http://www.uni-leipzig.de

Weitere Nachrichten aus der Kategorie Interdisziplinäre Forschung:

nachricht Entzündungshemmende Birkeninhaltsstoffe nachhaltig nutzen
03.07.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Blick unter den Gletscher
12.06.2017 | Universität Bern

Alle Nachrichten aus der Kategorie: Interdisziplinäre Forschung >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Einblicke unter die Oberfläche des Mars

Die Region erstreckt sich über gut 1000 Kilometer entlang des Äquators des Mars. Sie heißt Medusae Fossae Formation und über ihren Ursprung ist bislang wenig bekannt. Der Geologe Prof. Dr. Angelo Pio Rossi von der Jacobs University hat gemeinsam mit Dr. Roberto Orosei vom Nationalen Italienischen Institut für Astrophysik in Bologna und weiteren Wissenschaftlern einen Teilbereich dieses Gebietes, genannt Lucus Planum, näher unter die Lupe genommen – mithilfe von Radarfernerkundung.

Wie bei einem Röntgenbild dringen die Strahlen einige Kilometer tief in die Oberfläche des Planeten ein und liefern Informationen über die Struktur, die...

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungen

Den Nachhaltigkeitskreis schließen: Lebensmittelschutz durch biobasierte Materialien

21.07.2017 | Veranstaltungen

Operatortheorie im Fokus

20.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einblicke unter die Oberfläche des Mars

21.07.2017 | Geowissenschaften

Wegbereiter für Vitamin A in Reis

21.07.2017 | Biowissenschaften Chemie

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungsnachrichten