Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie unser Gehirn entsteht

29.10.2012
Es ist eine zentrale Frage rund um die Spezies Mensch: Wie kommt es, dass wir denken? Und wie entsteht dieses Organ, mit dem wir es tun: unser Gehirn?

Ein Forscherteam der Universität Leipzig hat sich dieser Frage angenommen und sogenannte "neuronale Wachstumskegel" näher untersucht, die dabei eine besondere Rolle spielen. Veröffentlicht haben Thomas Fuhs, Lydia Reuter und Iris Vonderhaid aus der Arbeitsgruppe von Professor Josef A. Käs, tätig in der Abteilung Physik weicher Materie an der Fakultät für Physik und Geowissenschaften, sowie Professor Dr. Thomas Claudepierre, Klinik und Poliklinik für Augenheilkunde am Universitätsklinikum Leipzig, ihre Ergebnisse jetzt in einem Artikel in der renommierten Fachzeitschrift „Cytoskeleton“. Er ist seit wenigen Tagen online und wird in Kürze auch im Heft erscheinen.

Das Säugetiergehirn beginnt seine Entwicklung nicht als vernetztes Gebilde. Die einzelnen Nervenzellen vernetzen sich erst im Laufe der Zeit. Hierzu senden die Nervenzellen Neurite aus. Wenn sich zwei Neurite treffen, können sie eine Synapse bilden und so eine Verbindung zwischen den beiden Nervenzellen herstellen. An der Spitze jedes wachsenden Neurits befindet sich ein "Wachstumskegel".

Die Forschergruppe um Thomas Fuhs hat besonders die Frage interessiert, wie stark so ein Wachstumskegel ist. Welche Hindernisse kann er aus dem Weg schieben, und wann scheitert er? Dazu haben sie den Wachstumskegeln "Hindernisse" in den Weg gesetzt, die mit der Tastfeder eines Rasterkraftmikroskops verbunden sind. Wenn der Wachstumskegel weiter wächst, drückt er gegen das Hindernis - und diese Kraft lässt sich mit dem Rasterkraftmikroskop aufzeichnen. Um gegen ein Hindernis drücken zu können, muss sich der Wachstumskegel am Substrat festhalten und steif genug sein, um nicht zwischen Hindernis und Substrat zerquetscht zu werden.

Die Ergebnisse zeigen, dass Wachstumskegel des zentralen Nervensystems im Vergleich zu anderen Zellen geringere Kräfte erzeugen. Darüber hinaus sind sie deutlich weicher als die meisten anderen Zellen, wie etwa Fibroblasten oder Endothelzellen. Wieso haben aber grade diese Zellen, die für die Steuerung des ganzen Organismus verantwortlich sind, so schlechte Karten wenn es darum geht, ihr Ziel zu erreichen? Es könnte zu ihrem eigenen Schutz sein. Denn ihre normale Umgebung im Gehirn besteht aus ebenfalls sehr weichen Gliazellen. In dieser weichen Umgebung sind die erzeugten Kräfte dann wieder ausreichend. Zum anderen ist das Gehirn von Blutgefäßen durchzogen, in diese sollten sich die Neuriten nicht verirren.

Die Wände von Blutgefäßen im Hirn sind über eine Größenordnung steifer als Wachstumskegel, und damit für diesen quasi undurchdringlich. Nachteilig kann sich die Schwäche der Wachstumkegel allerdings auswirken, wenn sich geschädigtes Gewebe in Folge einer Verletzung verhärtet.

Dieser Aspekt hat in der bisherigen Forschung zur Neuroregeneration praktisch keine Rolle gespielt. Nun hofft die Forschergruppe, mit ihrer Arbeit ein weiteres Puzzleteil bei der Antwort auf die Frage, wie unser Gehirn entsteht, hinzufügen zu können. Und vielleicht hilft das beim Verständnis, warum sich das zentrale Nervensystem nach Verletzungen nicht regeneriert.

Weitere Informationen:
Prof. Dr. Josef A. Käs
Telefon: +49 341 97-32470
E-Mail: jkaes@physik.uni-leipzig.de
www.uni-leipzig.de/~pwm
Thomas Fuhs
Physik weicher Materie
Telefon: +49 341 97-32486
E-Mail: TFuhs@physik.uni-leipzig.de
www.uni-leipzig.de/~pwm

Ronny Arnold | Universität Leipzig
Weitere Informationen:
http://www.uni-leipzig.de

Weitere Nachrichten aus der Kategorie Interdisziplinäre Forschung:

nachricht ROBOLAB generiert neue Forschungsansätze und Kooperationen
08.05.2017 | Hochschule Mainz

nachricht Wie Coronaviren Zellen umprogrammieren
28.04.2017 | Justus-Liebig-Universität Gießen

Alle Nachrichten aus der Kategorie: Interdisziplinäre Forschung >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

Staphylococcus aureus ist aufgrund häufiger Resistenzen gegenüber vielen Antibiotika ein gefürchteter Erreger (MRSA) insbesondere bei Krankenhaus-Infektionen. Forscher des Paul-Ehrlich-Instituts haben immunologische Prozesse identifiziert, die eine erfolgreiche körpereigene, gegen den Erreger gerichtete Abwehr verhindern. Die Forscher konnten zeigen, dass sich durch Übertragung von Protein oder Boten-RNA (mRNA, messenger RNA) des Erregers auf Immunzellen die Immunantwort in Richtung einer aktiven Erregerabwehr verschieben lässt. Dies könnte für die Entwicklung eines wirksamen Impfstoffs bedeutsam sein. Darüber berichtet PLOS Pathogens in seiner Online-Ausgabe vom 25.05.2017.

Staphylococcus aureus (S. aureus) ist ein Bakterium, das bei weit über der Hälfte der Erwachsenen Haut und Schleimhäute besiedelt und dabei normalerweise keine...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

DFG fördert 15 neue Sonderforschungsbereiche (SFB)

26.05.2017 | Förderungen Preise

Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

26.05.2017 | Biowissenschaften Chemie

Unglaublich formbar: Lesen lernen krempelt Gehirn selbst bei Erwachsenen tiefgreifend um

26.05.2017 | Gesellschaftswissenschaften