Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Von Fliegen Sehen lernen

09.07.2009
Flugsimulator für Insekten hilft bei Konstruktion intelligenter Roboter

Scheinbar plumpe und ordinäre Schmeißfliegen sind wahre Flugkünstler.

Plötzliche Richtungsänderungen, in der Luft stehen, blitzschnell um die eigene Achse drehen und punktgenaue Landungen sind für sie selbstverständlich. Extrem schnelle Augen helfen ihnen, im rasanten Hin und Her die Orientierung nicht zu verlieren.

Doch: Wie verarbeitet ihr winziges Gehirn so schnell und effizient die Vielzahl der Bilder und Signale? Um das zu ergründen, haben Wissenschaftler des Münchner Exzellenzclusters „Cognition for Technical Systems (CoTeSys)“ einen Flugsimulator für Fliegen gebaut. Hier erforschen sie, was in den Fliegengehirnen abläuft. Ihr Ziel: Dass Menschen diese Fähigkeiten nutzen können, etwa für Roboter, die eigenständig ihre Umgebung wahrnehmen und daraus lernen.

Fliegengehirne leisten Unglaubliches. Sie navigieren im schnellen Flug mit halsbrecherischen Kurven um Hindernisse, reagieren in Sekundenbruchteilen auf die Hand, die sie fangen will, und finden zielsicher zu den stark riechenden „Leckerbissen“, von denen sie leben. Seit langem weiß die Forschung, dass Fliegen sehr viel mehr Bilder wahrnehmen als Menschen. Während für menschliche Augen spätestens ab 25 Bildern pro Sekunde Einzelbilder in einen kontinuierlichen Bewegungsablauf übergehen, erkennen Schmeißfliegen noch 100 Bilder pro Sekunde als einzelne Sinneseindrücke, können sie blitzschnell interpretieren und so ihre Bewegung steuern und die Lage im Raum exakt bestimmen.

Dabei ist das Fliegengehirn kaum größer als ein Stecknadelkopf. Würde es genauso funktionieren, wie das Gehirn des Menschen, würde dies bei Weitem nicht zu solchen Leistungen ausreichen. Es muss die Bilder von den Augen also einfacher und sehr viel effizienter zu einer visuellen Wahrnehmung verarbeiten. Effiziente Wahrnehmung von visuellen Signalen aber ist etwas, was Roboterkonstrukteure ganz besonders interessiert, denn Roboter haben heute noch große Schwierigkeiten, ihre Umgebung nicht nur mit Kameras zu sehen, sondern auch wahrzunehmen, was sie sehen. Selbst das Erkennen von Hindernissen in ihrer eigenen Arbeitsfläche dauert viel zu lange. Daher müssen bislang beispielsweise Menschen noch mit Schutzgittern vor den maschinellen Helfern geschützt werden. Eine direkte, unterstützende Zusammenarbeit von intelligenten Maschinen und Menschen aber ist ein zentrales Forschungsziel des Exzellenzclusters „CoTeSys“ (Cognition for Technical Systems), zu dem sich im Raum München rund 100 Wissenschaftler von fünf Hochschulen und Forschungsinstituten zusammengefunden haben.

Im Rahmen von „CoTeSys“ erkunden Hirnforscher des Max-Planck-Instituts für Neurobiologie, wie Fliegen es schaffen, ihre Umwelt und ihre Bewegung so effizient wahrzunehmen. Unter Leitung des Neurobiologen Prof. Alexander Borst haben sie einen Flugsimulator für Fliegen gebaut. Hier werden Schmeißfliegen auf einem halbrunden Display unterschiedliche Muster, Bewegungen und Sinnesreize vorgespielt. Die Insekten sind an einem Halter befestigt, damit Elektroden die Reaktionen der Gehirnzellen registrieren können. Die Forscher analysieren so, was im Fliegengehirn passiert, wenn die Tiere wie wild kreuz und quer durch ein Zimmer sausen.

Die ersten Ergebnisse zeigen Eines ganz deutlich: Fliegen verarbeiten die Bilder ihrer unbeweglichen Augen ganz anders als das menschliche Gehirn. Bewegungen im Raum erzeugen sogenannte „optische Flussfelder“, die für eine ganz bestimmte Bewegung charakteristisch sind: Bei einer Vorwärtsbewegung fließen die Objekte seitlich vorbei, bei frontalem Anflug vergrößern sich die Objekte, nahe und weit entfernte Dinge bewegen sich ganz unterschiedlich. Die Fliege erstellt als ersten Schritt in ihrem winzigen Gehirn aus diesen Bewegungen ein Muster. Geschwindigkeit und Richtung, mit denen sich einzelne Bildpunkte vor den Augen scheinbar bewegen, ergeben in jedem Moment ein typisches Bild von Bewegungsvektoren, das Flussfeld, das schließlich in einem zweiten Schritt in der sogenannten „Lobula-Platte“ ausgewertet wird, einer höheren Ebene des Sehzentrums. In jeder Gehirnhälfte sind lediglich 60 Nervenzellen dafür zuständig – jede reagiert besonders intensiv, wenn das für sie passende Muster vorliegt. Wichtig für die Analyse der optischen Flussfelder ist, dass die Bewegungsinformation von beiden Augen zusammen geführt wird. Dies geschieht über eine direkte Verschaltung der spezialisierten Nervenzellen, sogenannte VS-Zellen. So ergibt sich für die Fliege eine exakte Information über ihre Lage und Bewegung.

„Durch unsere Ergebnisse ist das für Rotationsbewegungen zuständige Netzwerk der VS-Zellen im Fliegengehirn heute einer der am besten verstandenen Schaltkreise des Nervensystems“, erläutert Prof. Borst die Bedeutung dieser Untersuchungen. Diese Arbeiten bleiben aber nicht bei der reinen Grundlagenforschung stehen. Die Befunde der Martinsrieder Fliegenforscher sind besonders auch für die Ingenieure am Lehrstuhl für Steuerungs- und Regelungstechnik der Technischen Universität München (TUM) interessant, mit denen Prof. Borst im Rahmen von „CoTeSys“ eng zusammenarbeitet.

Die Forscher an der Technischen Universität entwickeln unter Leitung von Prof. Martin Buss und Dr. Kolja Kühnlenz intelligente Maschinen, die über Kameras ihre Umwelt beobachten, daraus lernen und flexibel auf die jeweilige Situation reagieren. Zielsetzung dieser Forschungsarbeiten sind intelligente Maschinen, die direkt mit dem Menschen umgehen können, auf ihn reagieren und ihn nicht gefährden. Auch die Schutzzäune in den Fabriken zwischen Menschen und Robotern sollen fallen. Dafür sind einfache, schnelle und effiziente Verfahren für die Analyse und die Interpretation von Kamerabildern unbedingt erforderlich.

Die TUM-Forscher entwickelten beispielsweise einen kleinen Flugroboter, der Fluglage und Bewegung durch visuelle Analyse im Computer nach dem Vorbild der Fliegengehirne kontrolliert. Einem fahrbaren Roboter, dem Autonomous City Explorer (ACE) wurde die Aufgabe gestellt, durch Ansprechen und Fragen von Passanten vom Institut zum etwa 1,5 Kilometer entfernten Münchner Marienplatz zu finden. Dabei musste er auch die Gesten der Menschen interpretieren, die ihm den Weg zeigten, und er musste sich –verkehrsgerecht – ausschließlich auf dem Gehsteig bewegen.

Ohne effiziente Bildanalyse ist ein Zusammenspiel von intelligenten Maschinen und Menschen nicht denkbar. Die Forschungsarbeiten am Flugsimulator für Fliegen bieten dafür durch den Austausch der Wissenschaftler aus unterschiedlichen Disziplinen im Rahmen von CoTeSys einen interessanten Ansatz, der auch einfach genug erscheint, um technisch umsetzbar zu sein.
Kostenfreies Bildmaterial
zum Thema erhalten Sie unter
http://www.cotesys.de/media/pictures-for-press.html

Weitere Informationen:
CoTeSys: www.cotesys.org
Max-Planck-Institut für Neurobiologie: www.neuro.mpg.de
Für Rückfragen:
Dr. Uwe Haass,
Geschäftsführer CoTeSys
CCRL – CoTeSys Central Robotics Laboratory
Technische Universität München
Barer Straße 21, 80290 München
Telefon 089- 289 25 723
E-Mail: gst@tum.de

Dr. Uwe Haass, | Technische Universität München
Weitere Informationen:
http://www.neuro.mpg.de
http://www.cotesys.org
http://www.tum.de

Weitere Nachrichten aus der Kategorie Interdisziplinäre Forschung:

nachricht Blick unter den Gletscher
12.06.2017 | Universität Bern

nachricht ROBOLAB generiert neue Forschungsansätze und Kooperationen
08.05.2017 | Hochschule Mainz

Alle Nachrichten aus der Kategorie: Interdisziplinäre Forschung >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften