Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Das Geheimnis starker Zähne: Nanostrukturen unter Spannung

10.06.2015

Wissenschaftler entdecken Grundlagen für neue keramische Materialien

Einem interdisziplinären Team um Forscher der Charité – Universitätsmedizin Berlin ist es gelungen, die Biostruktur der Zahnsubstanz Dentin und deren innere Mechanismen zu entschlüsseln. Anders als Knochen kann Dentin Risse oder Brüche weder reparieren noch heilen.


Biostruktur des Dentin: Tubuli und Netz von Kollagenfasern, in denen mineralische Nanopartikel eingebettet sind – angespannt links, entspannt rechts

Jean-Baptiste Forien, © Charité – Universitätsmedizin Berlin

Es gilt allerdings als eines der beständigsten organischen Materialien. Wie die Wissenschaftler nun erstmals zeigen: Innere Spannungen sorgen dafür, dass Schäden nicht entstehen oder begrenzt bleiben. Was zur Widerstandskraft gesunder Zähne führt, ist in der Fachzeitschrift Nano Letters* veröffentlicht.

Einem interdisziplinären Team um Forscher der Charité – Universitätsmedizin Berlin ist es gelungen, die Biostruktur der Zahnsubstanz Dentin und deren innere Mechanismen zu entschlüsseln. Anders als Knochen kann Dentin Risse oder Brüche weder reparieren noch heilen.

Es gilt allerdings als eines der beständigsten organischen Materialien. Wie die Wissenschaftler nun erstmals zeigen: Innere Spannungen sorgen dafür, dass Schäden nicht entstehen oder begrenzt bleiben. Was zur Widerstandskraft gesunder Zähne führt, ist in der Fachzeitschrift Nano Letters* veröffentlicht.

Zähne halten im Idealfall ein Leben lang, auch wenn sie täglich enormen Kräften ausgesetzt sind. Bislang war unklar, warum das Dentin, eine knochenähnliche Substanz, die den eigentlichen Zahn bildet, so belastbar ist. Das Team um Dr. Paul Zaslansky am Julius Wolff Institut (JWI) der Charité hat nun die Nanostrukturen von Dentin analysiert. Mineralische Nanopartikel sind demnach in ein dichtes Netz aus Kollagenfasern eingebettet. Ziehen sich diese Strukturen zusammen, werden die Mineralteilchen komprimiert. Die dabei entstehenden inneren Spannungen erhöhen die Belastbarkeit der Biostruktur.

Einblick in die winzigen Strukturen haben die Forscher durch die Arbeit an wissenschaftlichen Großgeräten erhalten, die hochbrillante Strahlung von Tetrahertz- bis in den Röntgenbereich erzeugen: Die Synchrotronquelle BESSY II des Helmholtz-Zentrums Berlin für Materialien und Energie und die ESRF – European Synchrotron Radiation Facility in Grenoble. Das Wissen um innere Vorspannungen wird in den Ingenieurwissenschaften bewusst eingesetzt, um Materialien für technische Anwendungen gezielt zu verstärken. Die Biologie kennt diesen Trick offenbar schon viel länger und wendet ihn in unseren Zähnen an.

Um das Prinzip nachzuweisen, haben die Forscher die Feuchtigkeit in Dentinproben verändert. Die Messungen zeigen, wie die Spannung der Mineralpartikel zunimmt, wenn die Strukturfasern schrumpfen. „Dieser Mechanismus trägt dazu bei, das Entstehen von Rissen zu verhindern. Die Art und Weise der Kompression sorgt zudem dafür, dass die innersten Bereiche des Zahns und damit die empfindliche Pulpa weitgehend vor Schäden geschützt bleiben“, erklärt Dr. Paul Zaslansky vom Julius Wolff Institut der Charité.

Die Wissenschaftler stellten in weiteren Experimenten fest, dass die Verbindung zwischen Mineralpartikeln und Kollagenfasern durch Erhitzen geschwächt wird, wobei die Belastbarkeit von Dentin abnimmt. “Wir glauben, dass die inneren Spannungen zwischen Mineralpartikeln und Kollagenfasern im Gleichgewicht sein müssen. Das ist entscheidend für eine dauerhafte Belastbarkeit von Zähnen“, sagt Jean-Baptiste Forien, Erstautor der Studie.

Die Erkenntnisse erklären, warum künstlicher Zahnersatz weniger belastbar ist als gesunde Zahnsubstanz: Die keramischen Materialien sind einfach zu „passiv“ gegenüber Belastung, da ihnen die inneren Mechanismen fehlen, die der natürlichen Zahnsubstanz zu Stabilität verhelfen. „Vielleicht liefern die Ergebnisse der Arbeit Anregungen für die Entwicklung belastbarer keramischer Materialien zur Zahnbehandlung oder als Zahnersatz”, hofft Dr. Zaslansky.

An der DFG-geförderten Untersuchung zur Nanostruktur des Dentins waren neben den Charité-Wissenschaftlern Teams der Technischen Universität Berlin, des Max-Planck-Instituts für Kolloid- und Grenzflächenforschung, Potsdam und des Technion – Israel Institute of Technology, Haifa beteiligt.

*Jean-Baptiste Forien, Claudia Fleck, Peter Cloetens, Georg Duda, Peter Fratzl, Emil Zolotoyabko, Paul Zaslansky. Compressive Residual Strains in Mineral Nanoparticles as a Possible Origin of Enhanced Crack Resistance in Human Tooth Dentin. Nano Letters. 2015 May 29. doi: 10.1021/acs.nanolett.5b00143.

Kontakt:
Dr. Paul Zaslansky
Julius Wolff Institut
Berlin-Brandenburg Center for Regenerative Therapies (BCRT)
Charité – Universitätsmedizin Berlin
t: +49 30 450 559 589
E-Mail: paul.zaslansky@charite.de

Weitere Informationen:

http://www.charite.de
http://jwi.charite.de
http://www.esrf.eu
https://www.helmholtz-berlin.de
http://www.mpikg.mpg.de
http://www.technion.ac.il/en/
http://www.tu-berlin.de

Dr. Julia Biederlack | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Interdisziplinäre Forschung:

nachricht Fake News finden und bekämpfen
17.08.2017 | Fraunhofer-Institut für Sichere Informationstechnologie SIT

nachricht Neues interdisziplinäres Zentrum für Physik und Medizin in Erlangen
25.07.2017 | Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.

Alle Nachrichten aus der Kategorie: Interdisziplinäre Forschung >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Beschichtung lässt Muscheln abrutschen

18.08.2017 | Materialwissenschaften

Fettleber produziert Eiweiße, die andere Organe schädigen können

18.08.2017 | Biowissenschaften Chemie

Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

18.08.2017 | Geowissenschaften