Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Das Geheimnis starker Zähne: Nanostrukturen unter Spannung

10.06.2015

Wissenschaftler entdecken Grundlagen für neue keramische Materialien

Einem interdisziplinären Team um Forscher der Charité – Universitätsmedizin Berlin ist es gelungen, die Biostruktur der Zahnsubstanz Dentin und deren innere Mechanismen zu entschlüsseln. Anders als Knochen kann Dentin Risse oder Brüche weder reparieren noch heilen.


Biostruktur des Dentin: Tubuli und Netz von Kollagenfasern, in denen mineralische Nanopartikel eingebettet sind – angespannt links, entspannt rechts

Jean-Baptiste Forien, © Charité – Universitätsmedizin Berlin

Es gilt allerdings als eines der beständigsten organischen Materialien. Wie die Wissenschaftler nun erstmals zeigen: Innere Spannungen sorgen dafür, dass Schäden nicht entstehen oder begrenzt bleiben. Was zur Widerstandskraft gesunder Zähne führt, ist in der Fachzeitschrift Nano Letters* veröffentlicht.

Einem interdisziplinären Team um Forscher der Charité – Universitätsmedizin Berlin ist es gelungen, die Biostruktur der Zahnsubstanz Dentin und deren innere Mechanismen zu entschlüsseln. Anders als Knochen kann Dentin Risse oder Brüche weder reparieren noch heilen.

Es gilt allerdings als eines der beständigsten organischen Materialien. Wie die Wissenschaftler nun erstmals zeigen: Innere Spannungen sorgen dafür, dass Schäden nicht entstehen oder begrenzt bleiben. Was zur Widerstandskraft gesunder Zähne führt, ist in der Fachzeitschrift Nano Letters* veröffentlicht.

Zähne halten im Idealfall ein Leben lang, auch wenn sie täglich enormen Kräften ausgesetzt sind. Bislang war unklar, warum das Dentin, eine knochenähnliche Substanz, die den eigentlichen Zahn bildet, so belastbar ist. Das Team um Dr. Paul Zaslansky am Julius Wolff Institut (JWI) der Charité hat nun die Nanostrukturen von Dentin analysiert. Mineralische Nanopartikel sind demnach in ein dichtes Netz aus Kollagenfasern eingebettet. Ziehen sich diese Strukturen zusammen, werden die Mineralteilchen komprimiert. Die dabei entstehenden inneren Spannungen erhöhen die Belastbarkeit der Biostruktur.

Einblick in die winzigen Strukturen haben die Forscher durch die Arbeit an wissenschaftlichen Großgeräten erhalten, die hochbrillante Strahlung von Tetrahertz- bis in den Röntgenbereich erzeugen: Die Synchrotronquelle BESSY II des Helmholtz-Zentrums Berlin für Materialien und Energie und die ESRF – European Synchrotron Radiation Facility in Grenoble. Das Wissen um innere Vorspannungen wird in den Ingenieurwissenschaften bewusst eingesetzt, um Materialien für technische Anwendungen gezielt zu verstärken. Die Biologie kennt diesen Trick offenbar schon viel länger und wendet ihn in unseren Zähnen an.

Um das Prinzip nachzuweisen, haben die Forscher die Feuchtigkeit in Dentinproben verändert. Die Messungen zeigen, wie die Spannung der Mineralpartikel zunimmt, wenn die Strukturfasern schrumpfen. „Dieser Mechanismus trägt dazu bei, das Entstehen von Rissen zu verhindern. Die Art und Weise der Kompression sorgt zudem dafür, dass die innersten Bereiche des Zahns und damit die empfindliche Pulpa weitgehend vor Schäden geschützt bleiben“, erklärt Dr. Paul Zaslansky vom Julius Wolff Institut der Charité.

Die Wissenschaftler stellten in weiteren Experimenten fest, dass die Verbindung zwischen Mineralpartikeln und Kollagenfasern durch Erhitzen geschwächt wird, wobei die Belastbarkeit von Dentin abnimmt. “Wir glauben, dass die inneren Spannungen zwischen Mineralpartikeln und Kollagenfasern im Gleichgewicht sein müssen. Das ist entscheidend für eine dauerhafte Belastbarkeit von Zähnen“, sagt Jean-Baptiste Forien, Erstautor der Studie.

Die Erkenntnisse erklären, warum künstlicher Zahnersatz weniger belastbar ist als gesunde Zahnsubstanz: Die keramischen Materialien sind einfach zu „passiv“ gegenüber Belastung, da ihnen die inneren Mechanismen fehlen, die der natürlichen Zahnsubstanz zu Stabilität verhelfen. „Vielleicht liefern die Ergebnisse der Arbeit Anregungen für die Entwicklung belastbarer keramischer Materialien zur Zahnbehandlung oder als Zahnersatz”, hofft Dr. Zaslansky.

An der DFG-geförderten Untersuchung zur Nanostruktur des Dentins waren neben den Charité-Wissenschaftlern Teams der Technischen Universität Berlin, des Max-Planck-Instituts für Kolloid- und Grenzflächenforschung, Potsdam und des Technion – Israel Institute of Technology, Haifa beteiligt.

*Jean-Baptiste Forien, Claudia Fleck, Peter Cloetens, Georg Duda, Peter Fratzl, Emil Zolotoyabko, Paul Zaslansky. Compressive Residual Strains in Mineral Nanoparticles as a Possible Origin of Enhanced Crack Resistance in Human Tooth Dentin. Nano Letters. 2015 May 29. doi: 10.1021/acs.nanolett.5b00143.

Kontakt:
Dr. Paul Zaslansky
Julius Wolff Institut
Berlin-Brandenburg Center for Regenerative Therapies (BCRT)
Charité – Universitätsmedizin Berlin
t: +49 30 450 559 589
E-Mail: paul.zaslansky@charite.de

Weitere Informationen:

http://www.charite.de
http://jwi.charite.de
http://www.esrf.eu
https://www.helmholtz-berlin.de
http://www.mpikg.mpg.de
http://www.technion.ac.il/en/
http://www.tu-berlin.de

Dr. Julia Biederlack | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Interdisziplinäre Forschung:

nachricht Mit Nanopartikel-Tandems gegen den Herzinfarkt
01.12.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Virtuelle Realität für Bakterien
01.12.2017 | Institute of Science and Technology Austria

Alle Nachrichten aus der Kategorie: Interdisziplinäre Forschung >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lange Speicherung photonischer Quantenbits für globale Teleportation

Wissenschaftler am Max-Planck-Institut für Quantenoptik erreichen mit neuer Speichertechnik für photonische Quantenbits Kohärenzzeiten, welche die weltweite...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Materialinnovationen 2018 – Werkstoff- und Materialforschungskonferenz des BMBF

13.12.2017 | Veranstaltungen

Innovativer Wasserbau im 21. Jahrhundert

13.12.2017 | Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rest-Spannung trotz Megabeben

13.12.2017 | Geowissenschaften

Computermodell weist den Weg zu effektiven Kombinationstherapien bei Darmkrebs

13.12.2017 | Medizin Gesundheit

Winzige Weltenbummler: In Arktis und Antarktis leben die gleichen Bakterien

13.12.2017 | Geowissenschaften