Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bombardierkäfer ist Vorbild für neuartigen Raumfahrtantrieb

23.01.2013
Das Zentrum für Angewandte Raumfahrttechnologie und Mikrogravitation (ZARM) ist an einem internationalen Projekt zur Entwicklung eines völlig neuen Antriebssystems für Raumfahrzeuge beteiligt.
Das Besondere dieser Neuentwicklung: das Prinzip beruht auf einem Vorbild aus der Natur, nämlich dem Verteidigungssystem des Bombardierkäfers. Dabei wird der Schub nicht kontinuierlich erzeugt, sondern in Form von schnell aufeinanderfolgenden Pulsen – unter ausschließlicher Verwendung von „grünen Treibstoffen“.

Das EU-Projekt für die Entwicklung dieses hoch innovativen Raumfahrtantriebs zum Manövrieren von Satelliten und Raumsonden hat einen buchstäblich schönen Namen bekommen: „PulCheR“ (Pulsed Chemical Rocket with Green High Performance Propellants) ist Latein und bedeutet „schön“. Ein passender Name für ein Projekt, das einen großen Beitrag zur Erhöhung der Effizienz von Lageregelungstriebwerken leistet und noch dazu den Umstieg auf umweltfreundliche Treibstoffe ermöglicht.

Traditionell werden Bahnmanöver von Raumsonden und Satelliten mit Hilfe von Hydrazin-Triebwerken durchgeführt. Diese sind schon seit langem in der Raumfahrt im Einsatz, haben aber den Nachteil, dass Hydrazin hochgiftig und krebserregend ist. Dadurch ist der Umgang mit dem Treibstoff während der Vorbereitungen am Boden enorm kompliziert. Außerdem werden solche Systeme meist mit hohem Druck betrieben. Um einen entsprechend hohen Brennkammerdruck zu erreichen ist der Einsatz von Pumpen oder Hochdrucktanks erforderlich, wodurch das Gesamtsystem sehr komplex und schwer wird.

Wie funktioniert der Puls-Antrieb?
PulCheR ist ein neues Antriebskonzept, bei dem die Treibstoffe unter niedrigem Druck in die Brennkammer befördert werden. Sobald der Brennstoff die Brennkammer erreicht, beginnt er mit Hilfe eines Katalysators zu brennen. Dadurch dass Druck und Temperatur steigen, wird ein kurzer Schubimpuls erzeugt. Ist dieser abgeklungen und der Druck wieder niedriger, fließt neuer Treibstoff aus dem Reservoir nach – wiederum unter niedrigem Druck - und der Prozess beginnt von neuem.

Im Rahmen des Projektes sollen zwei Varianten entwickelt werden, die sich in der Art des Katalysators unterscheiden: Eine Variante ist ein Monopropellant-Antrieb, der mit nur einem Treibstoff arbeitet und als Katalysator ein festes Metallgranulat nutzt, das den Zerfall der Treibstoffkomponente auslöst. Bei der Bipropellant-Variante werden zwei Treibstoffe in die Brennkammer gespritzt, die hypergol sind, also bei Kontakt selbst zünden. Die zweite Variante ahmt exakt den „Explosionsapparat“ des Bombardierkäfers nach, der durch Mischen zweier sehr reaktiver Chemikalien heiße Gase erzeugt, um sich gegen seine Feinde zur Wehr zu setzen.

Aufgrund seines Puls-Prinzips ist PulCheR ein zwar diskontinuierlich aber hochfrequent arbeitendes Antriebssystem, das das Potenzial hat, viele derzeit verwendete Antriebskonzepte sowohl im Bereich Orbital-Flüge und inter-planetare Missionen als auch bei wiedereintrittsfähigen Raumfahrzeugen zu ersetzen.

Die Vorteile
Bei allen Satellitenmissionen ist Gewichtsreduzierung ein extrem wichtigstes Thema, da die Gesamtmasse des Satelliten immer durch den Launcher begrenzt ist. Der Pulsantrieb bietet nun den Vorteil, dass das gesamte Antriebssystem durch den niedrigen Druck des Versorgungssystems deutlich an Volumen und Gewicht verliert. Im Vergleich zu Missionen mit klassischem Antrieb können dadurch entweder Kosten gespart oder die gesparte Masse durch anderweitige Ausstattung ersetzt werden. Denkbar wäre, das gesparte Gewicht in mehr Treibstoff zu investieren und damit die Missionsdauer zu verlängern oder z.B. eine leistungsfähigere Kamera für die Beobachtung des Experiments mitzunehmen, die vielleicht mehr Strom braucht (also mehr Masse im Energiesystem erfordert) oder einfach von sich aus schwerer ist.
Ein weiterer wichtiger Vorteil ist die Tatsache, dass für den Antrieb nur Treibstoffe verwendet werden, die als "green propellants" eingestuft und damit deutlich weniger toxisch und viel einfacher zu handhaben sind. Folglich lassen sich mit der Reduzierung der erforderlichen Sicherheitsmaßnahmen bereits bei der Vorbereitung von Missionen weitere Kosten und viel Zeit sparen.

Die ZARM-Arbeitsgruppen "Space Propulsion and Energy Systems" und "Aerospace Combustion Engineering" sind in dem Verbundprojekt unter anderem an der Untersuchung der Injektoren und den Leistungsberechnungen des Gesamtsystems beteiligt. Das Projekt wird durch das siebte Rahmenprogramm (FP7/2007-2013) der Europäischen Union mit der Nummer n°313271 gefördert und wurde Anfang Januar 2013 bewilligt.

Ansprechpartner für inhaltliche Fragen:
Dr.-Ing. Peter Rickmers
Head of Space Propulsion and Energy Systems Group
ZARM - Zentrum für angewandte Raumfahrttechnologie und Mikrogravitation
Universität Bremen
Tel. +49 421 218-57872
peter.rickmers@zarm.uni-bremen.de

Ansprechpartnerin für allgemeine Presseanfragen:
Birgit Kinkeldey
Leiterin Kommunikation
ZARM Fallturm-Betriebsgesellschaft mbH
Tel. +49 421 218-57755
birgit.kinkeldey@zarm.uni-bremen.de

Birgit Kinkeldey | idw
Weitere Informationen:
http://www.zarm.uni-bremen.de

Weitere Nachrichten aus der Kategorie Interdisziplinäre Forschung:

nachricht Blick unter den Gletscher
12.06.2017 | Universität Bern

nachricht ROBOLAB generiert neue Forschungsansätze und Kooperationen
08.05.2017 | Hochschule Mainz

Alle Nachrichten aus der Kategorie: Interdisziplinäre Forschung >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorbild Delfinhaut: Elastisches Material vermindert Reibungswiderstand bei Schiffen

Für eine elegante und ökonomische Fortbewegung im Wasser geben Delfine den Wissenschaftlern ein exzellentes Vorbild. Die flinken Säuger erzielen erstaunliche Schwimmleistungen, deren Ursachen einerseits in der Körperform und andererseits in den elastischen Eigenschaften ihrer Haut zu finden sind. Letzteres Phänomen ist bereits seit Mitte des vorigen Jahrhunderts bekannt, konnte aber bislang nicht erfolgreich auf technische Anwendungen übertragen werden. Experten des Fraunhofer IFAM und der HSVA GmbH haben nun gemeinsam mit zwei weiteren Forschungspartnern eine Oberflächenbeschichtung entwickelt, die ähnlich wie die Delfinhaut den Strömungswiderstand im Wasser messbar verringert.

Delfine haben eine glatte Haut mit einer darunter liegenden dicken, nachgiebigen Speckschicht. Diese speziellen Hauteigenschaften führen zu einer signifikanten...

Im Focus: Kaltes Wasser: Und es bewegt sich doch!

Bei minus 150 Grad Celsius flüssiges Wasser beobachten, das beherrschen Chemiker der Universität Innsbruck. Nun haben sie gemeinsam mit Forschern in Schweden und Deutschland experimentell nachgewiesen, dass zwei unterschiedliche Formen von Wasser existieren, die sich in Struktur und Dichte stark unterscheiden.

Die Wissenschaft sucht seit langem nach dem Grund, warum ausgerechnet Wasser das Molekül des Lebens ist. Mit ausgefeilten Techniken gelingt es Forschern am...

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationale Fachkonferenz IEEE ICDCM - Lokale Gleichstromnetze bereichern die Energieversorgung

27.06.2017 | Veranstaltungen

Internationale Konferenz zu aktuellen Fragen der Stammzellforschung

27.06.2017 | Veranstaltungen

Fraunhofer FKIE ist Gastgeber für internationale Experten Digitaler Mensch-Modelle

27.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Mainzer Physiker gewinnen neue Erkenntnisse über Nanosysteme mit kugelförmigen Einschränkungen

27.06.2017 | Biowissenschaften Chemie

Wave Trophy 2017: Doppelsieg für die beiden Teams von Phoenix Contact

27.06.2017 | Unternehmensmeldung

Warnsystem KATWARN startet international vernetzten Betrieb

27.06.2017 | Informationstechnologie