Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Erste Tarnkappe für sichtbares Licht vorgestellt

14.11.2007
Viele physikalische Fragen bleiben dennoch ungelöst

Forschern des Department of Electrical & Computer Engineering an der Universität in Maryland ist es nach eigenen Angaben gelungen, die erste Tarnkappe für sichtbares Licht zu entwickeln.

Bereits Ende September vergangenen Jahres hatte eine Gruppe von US-Forschern mit der Meldung aufhorchen lassen, dass es ihnen gelungen sei, eine Tarnkappe aus Metamaterialien zu konstruieren (pressetext berichtete: http://www.pte.at/pte.mc?pte=061020017 ).

Zum Unterschied zur aktuellen Variante, funktionierte der damals vorgestellte Tarnmantel aber nur im Mikrowellenbereich, war also optisch ohne Weiteres zu sehen. Auch das nun präsentierte Projekt hat noch seine Schwachstellen: Die entwickelte Tarnkappe ist mit einem Durchmesser von nur zehn Mikrometern so klein, dass damit umhüllte Gegenstände für das bloße menschliche Auge auch ohne Tarnfunktion nicht zu erkennen wären.

Das Prinzip eines physikalischen Tarnmantels ist eigentlich durchaus simpel. Man muss nur alle Lichtstrahlen, die auf einen Körper treffen, um diesen herumlenken. Hinter dem Körper vereinigen sich die Strahlen dann wieder und bewegen sich normal weiter, als wären sie nie auf ein Hindernis gestoßen. Ein Beobachter, der auf das so getarnte Objekt blickt, sieht zwar alles, was sich hinter diesem befindet, den Mantel selbst und seinen Inhalt sieht er aber nicht.

Die praktische Umsetzung dieses Prinzips ist allerdings höchst kompliziert. Um nämlich Licht möglichst unauffällig um ein Objekt herumzuleiten, benötigt man optische Materialien mit ganz speziellen Eigenschaften. Eine Hoffnung stellen in diesem Zusammenhang die sogenannten Metamaterialien dar. "Metamaterialien sind kleine metallische Strukturen, die in keinem natürlichen, sondern einem sehr komplexen Prozess hergestellt werden", erläutert Karl Unterrainer, Professor für Photonik an der Technischen Universität Wien, im Gespräch mit pressetext. Wenn ein Lichtstrahl das Metamaterial durchläuft, erzeugt er darin kleine elektrische Ströme, die wiederum auf den Strahl zurückwirken und ihn in eine bestimmte Richtung lenken. Die Größe und der Abstand der verbauten Elemente bestimmen dabei, wie stark ein Lichtstrahl abgelenkt wird. "Das Spezielle an Metamaterialien ist, dass ihr Brechungsindex ein von außen bestimmbarer Parameter ist", so Unterrainer. Auch negative Brechzahlen seien so kein Ding der Unmöglichkeit mehr.

Forscher, die sich mit der Entwicklung von Tarntechnologie beschäftigen, stehen aber noch vor einer Reihe von weiteren Herausforderungen. So muss ein brauchbares Material nicht nur bestimmte Brennzahlen aufweisen, es darf selbstverständlich auch nicht reflektieren, denn sonst würde es glänzen und eine Tarnung würde nicht funktionieren. Hinzu kommt die Kritik vieler Forscher, dass ein Tarnmantel für sichtbares Licht nicht größer als ein paar hundertstel Millimeter sein dürfte, denn sonst würde er einen Schatten werfen. Ungeachtet dessen bleibt auch noch zu klären, wie ein derartiger Tarnmantel praktisch anzuwenden wäre. Wenn nämlich alles Licht um das Mantelinnere herumgelenkt wird, dringt nichts hinein und sein Träger würde völlig im Dunkeln tappen.

Markus Steiner | pressetext.austria
Weitere Informationen:
http://www.ece.umd.edu

Weitere Berichte zu: Lichtstrahl Metamaterial Tarnkappe Tarnmantel

Weitere Nachrichten aus der Kategorie Interdisziplinäre Forschung:

nachricht Neues Verbundprojekt erforscht die neurodegenerative Erkrankung Morbus Alzheimer
12.09.2017 | Universitätsklinikum Würzburg

nachricht Damit sich Mensch und Maschine besser verstehen
04.09.2017 | Technische Universität Chemnitz

Alle Nachrichten aus der Kategorie: Interdisziplinäre Forschung >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Schmetterlingsflügel inspiriert Photovoltaik: Absorption lässt sich um bis zu 200 Prozent steigern

Sonnenlicht, das von Solarzellen reflektiert wird, geht als ungenutzte Energie verloren. Die Flügel des Schmetterlings „Gewöhnliche Rose“ (Pachliopta aristolochiae) zeichnen sich durch Nanostrukturen aus, kleinste Löcher, die Licht über ein breites Spektrum deutlich besser absorbieren als glatte Oberflächen. Forschern am Karlsruher Institut für Technologie (KIT) ist es nun gelungen, diese Nanostrukturen auf Solarzellen zu übertragen und deren Licht-Absorptionsrate so um bis zu 200 Prozent zu steigern. Ihre Ergebnisse veröffentlichten die Wissenschaftler nun im Fachmagazin Science Advances. DOI: 10.1126/sciadv.1700232

„Der von uns untersuchte Schmetterling hat eine augenscheinliche Besonderheit: Er ist extrem dunkelschwarz. Das liegt daran, dass er für eine optimale...

Im Focus: Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

Im Blut zirkulierende Biomoleküle und Zellen sind Träger diagnostischer Information, deren Analyse hochwirksame, individuelle Therapien ermöglichen. Um diese Information zu erschließen, haben Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein Mikrochip-basiertes Diagnosegerät entwickelt: Der »AnaLighter« analysiert und sortiert klinisch relevante Biomoleküle und Zellen in einer Blutprobe mit Licht. Dadurch können Frühdiagnosen beispielsweise von Tumor- sowie Herz-Kreislauf-Erkrankungen gestellt und patientenindividuelle Therapien eingeleitet werden. Experten des Fraunhofer ILT stellen diese Technologie vom 13.–16. November auf der COMPAMED 2017 in Düsseldorf vor.

Der »AnaLighter« ist ein kompaktes Diagnosegerät zum Sortieren von Zellen und Biomolekülen. Sein technologischer Kern basiert auf einem optisch schaltbaren...

Im Focus: Neue Möglichkeiten für die Immuntherapie beim Lungenkrebs entdeckt

Eine gemeinsame Studie der Universität Bern und des Inselspitals Bern zeigt, dass spezielle Bindegewebszellen, die in normalen Blutgefässen die Wände abdichten, bei Lungenkrebs nicht mehr richtig funktionieren. Zusätzlich unterdrücken sie die immunologische Bekämpfung des Tumors. Die Resultate legen nahe, dass diese Zellen ein neues Ziel für die Immuntherapie gegen Lungenkarzinome sein könnten.

Lungenkarzinome sind die häufigste Krebsform weltweit. Jährlich werden 1.8 Millionen Neudiagnosen gestellt; und 2016 starben 1.6 Millionen Menschen an der...

Im Focus: Sicheres Bezahlen ohne Datenspur

Ob als Smartphone-App für die Fahrkarte im Nahverkehr, als Geldwertkarten für das Schwimmbad oder in Form einer Bonuskarte für den Supermarkt: Für viele gehören „elektronische Geldbörsen“ längst zum Alltag. Doch vielen Kunden ist nicht klar, dass sie mit der Nutzung dieser Angebote weitestgehend auf ihre Privatsphäre verzichten. Am Karlsruher Institut für Technologie (KIT) entsteht ein sicheres und anonymes System, das gleichzeitig Alltagstauglichkeit verspricht. Es wird nun auf der Konferenz ACM CCS 2017 in den USA vorgestellt.

Es ist vor allem das fehlende Problembewusstsein, das den Informatiker Andy Rupp von der Arbeitsgruppe „Kryptographie und Sicherheit“ am KIT immer wieder...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Das Immunsystem in Extremsituationen

19.10.2017 | Veranstaltungen

Die jungen forschungsstarken Unis Europas tagen in Ulm - YERUN Tagung in Ulm

19.10.2017 | Veranstaltungen

Bauphysiktagung der TU Kaiserslautern befasst sich mit energieeffizienten Gebäuden

19.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Aufräumen? Nicht ohne Helfer

19.10.2017 | Biowissenschaften Chemie

Neue Biotinte für den Druck gewebeähnlicher Strukturen

19.10.2017 | Materialwissenschaften

Forscher studieren molekulare Konversion auf einer Zeitskala von wenigen Femtosekunden

19.10.2017 | Physik Astronomie