Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bakterien produzieren Jeans-Farbstoff

27.03.2002


Genmanipulierte Escherichia-Coli stellen Indigo am laufenden Band her

Die blaue Farbe von Jeans könnte künftig von Bakterien stammen. Forscher des Biotech-Unternehmens Genencor International in Palo Alto haben ein Bakterium genetisch so modifiziert, dass es permanent das Indigo-Pigment, wie es zur Färbung des Jeansstoffes verwendet wird, produziert. Das Verfahren ist darüber hinaus eine umweltfreundlichere Alternative zur chemischen Indigo-Herstellung, berichtet Nature in der aktuellen Online-Ausgabe. Genaue Details publizierten die Forscher im Journal of Industrial Microbiology & Biotechnology, March 2002, (Vol. 28, Nr. 3, 127-133).

Indigo, der "König der Farbstoffe", ist im reinen Zustand ein dunkelblaues, kupferrot schimmerndes Pulver, welches in Alkohol nicht und in Wasser nur schwer löslich ist. In konzentrierter Schwefelsäure löst es sich mit grüner, beim Erwärmen mit blauer Farbe auf. Die Indigopflanze enthält keinen Indigo, sondern Indican, eine gelbe Vorstufe des Farbstoffes. Erst nach einer Reihe von chemischen Umwandlungsprozessen entfaltet der äußerst lichtechte Farbstoff seine jeansblaue Farbe auf Textilmaterial. Seit 1878 wird Indigo synthetisch hergestellt. Wurden Bakterien bereits von Herstellern als "Ersatz-Indigo-Produzenten" eingesetzt trat als Nebenerscheinung ein Rotstich im Gewebe auf.

Das Team um Walter Weyler optimierte Gene des Escherichia-coli-Bakteriums, um das Rotpigment zu eliminieren. Laut Doug Crabb, Vize-Präsident von Genencor, ist die endgültige Farbe von der populären blauen und auf chemischem Weg hergestellten Jeansfarbe nicht zu unterscheiden. Außerdem verwendeten die Bakterien Zucker als Rohmaterial der Synthese und produzierten weniger Abfallstoffe. Dem Einsatz in der Industrie stehen derzeit allerdings noch Kosten und Effizienz der bakteriellen Färbung im Weg, vermuten Umweltexperten.

Ausgangssubstanz der biotechnologischen Indigo-Produktion ist die Aminosäure Tryptophan. Es wird natürlich von Bakterien produziert und ist aufgrund seiner Ringstruktur, wie diese im Kern des Indigo-Moleküls vorkommt, ideal für die Umwandlung in den Farbstoff. Chemische Veränderungen führen in der Folge zur Konvertierung in die blaue Farbe. Weyler manipulierte Bioindigo E.-coli im Vorfeld so, dass es eine hohe Konzentration an Tryptophan bildete und stattete es mit einem Gen aus, um die Bildung des roten Pigments einzuschränken. "Die Effizienz des Verfahrens muss aber noch verbessert werden", erklärt Crabb die Mängel des Verfahrens.

Jährlich werden weltweit rund 16.000 Tonnen Indigo-Farbstoff produziert. "Kein anderer Farbstoff gibt Jeans die charakteristische Farbe. Es muss Indigo sein", so der Biochemiker Philip John von der University of Reading. Er leitet ein Projekt, um in Europa als Alternative zur chemischen Synthese wieder Indigo produzierende Saaten einzuführen.

Sandra Standhartinger | pte.online
Weitere Informationen:
http://www.genencor.com
http://www.nature.com
http://www.naturesj.com/jim

Weitere Berichte zu: Bakterie Effizienz Farbstoff Gen Indigo

Weitere Nachrichten aus der Kategorie Interdisziplinäre Forschung:

nachricht Innovation: Optische Technologien verändern die Welt
01.12.2016 | Karlsruher Institut für Technologie

nachricht SeaArt-Projekt startet mit Feldversuchen an Nord- und Ostsee
18.11.2016 | Hochschule Hannover

Alle Nachrichten aus der Kategorie: Interdisziplinäre Forschung >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie