Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Zwischen Gentherapie und Solarenergie

20.03.2002


2,75 Millionen Euro für fünf neue Vorhaben in den Materialwissenschaften - auch eine neue Nachwuchsgruppe zur Werkstoffforschung etabliert

Der Einsatz neuer Materialien ist seit jeher eng mit der kulturellen Entwicklung der Menschheit verknüpft: etwa, um nur zwei Beispiele zu nennen, im Hinblick auf die Entwicklung neuer Verfahren oder zukunftsfähiger Technologien. Von neuen Materialien erhofft man sich unter anderem Miniaturisierung, Gewichtsminderung, bessere Umwelt- und Bioverträglichkeit oder auch geringeren Rohstoff- und Energieverbrauch - und dies bei gleichzeitig optimierten strukturellen und funktionellen Eigenschaften. Um diese Anforderungen an künftige Materialien zu bewältigen, reicht es nicht aus, bewährte Ansätze weiter zu entwickeln. Vielmehr ist gefordert, die traditionellen Grenzen der Werkstoffdisziplinen zu überschreiten und von Erkenntnissen und Erfahrungen anderer Gebiete einschließlich der Biowissenschaften zu profitieren.

Analog zu mancher Materialsynthese in der belebten Natur strebt die moderne Werkstoffforschung eine Kontrolle von Materie bis in den mikroskopischen Bereich an. Als Erfolg versprechende Strategien zeichnen sich hier die molekulare Erkennung, biomimetische Prinzipien, chemische Selbstorganisation und physikalische Methoden des Grenzflächendesigns ab. 2,75 Millionen Euro stellt die VolkswagenStiftung jetzt für fünf neue Vorhaben in ihrem Schwerpunkt "Komplexe Materialien" zur Verfügung - darunter auch für die beiden im Folgenden kurz beschriebenen, die sich im weitesten Sinne mit dem Themenkomplex "Gentherapie" und "Solarzellen" beschäftigen.

- 540.000 Euro erhält ein Projekt, an dem Arbeitsgruppen der Universitäten Leipzig und Bochum sowie des Max-Planck-Instituts für Kolloid- und Grenzflächenforschung in Golm beteiligt sind. Die Wissenschaftler beschäftigen sich mit einem Hauptproblem der Gentherapie, dem Transfer therapeutischer Gene in die Zielzellen des Körpers. Die Schwierigkeit liegt hier in der entscheidenden Barriere, der Zellmembran. Die Antragsteller wollen nun die Eigenschaft von Viren ausnutzen, von denen bekannt ist, dass sie diese Barriere zu umgehen verstehen. Auf dieser Grundlage soll ein künstliches Virus hergestellt werden mit den bekannten Vorteilen hinsichtlich des Gentransfers, aber ohne die gefürchtete Viruspathogenität. Dazu wird zunächst eine Polyelektrolytkapsel mit einer spezifischen Lipidschicht synthetisiert, in diese Kapsel werden dann die Membranbestandteile des Virus integriert. Verschmelzung des künstlichen Virus mit der Plasmamembran und anschließende Freisetzung des Inhaltes werden abschließend an Zellkulturen getestet. Das Vorhaben ist auf drei Jahre angelegt.
---------------------------------------------------
Kontakte: Universität Leipzig, Institut für Medizinische Physik, und Biophysik, Professor Dr. Edwin Donath, Telefon: 03 41/9 71 57 04, Fax: 03 41/9 71 57 09

Universität Bochum, Institut für Molekulare und Medizinische Virologie, Professor Dr. Klaus Überla, Telefon: 02 34/3 23 21 89, Fax: 02 34/3 21 43 52

Max-Planck-Institut in Golm, Dr. Gerald Brezesinski, Telefon: 03 31/5 67 92 34, Fax: 03 31/5 67 92 02
------------------------------------------------------------
- Mit 740.000 Euro unterstützt wird ein Projekt, das die Entwicklung neuartiger Dünnschichtsolarzellen auf der Basis von Hybridmaterialien aus Silizium und organischen Pigmenten zum Ziel hat. Beteiligt sind vier Arbeitsgruppen an den Universitäten Bremen, Oldenburg und Darmstadt sowie am Hahn-Meitner-Institut Berlin. Die Wissenschaftler wollen dabei die Vorteile beider Materialien zusammenführen: So ist Silizium von großem Nutzen im Hinblick auf die Ladungsträgertrennung, während bestimmte organische Farbstoffe eine hohe Ausbeute bei der Lichtabsorption ermöglichen. Beides zusammen soll, so hoffen die Forscher, zu hohen Umwandlungsquoten führen. Dadurch ließen sich Solarzellen mit noch höherer Leistungsfähigkeit herstellen. Methodisch zum Einsatz kommen Strukturuntersuchungen, optische Spektroskopie und Fotoleitfähigkeitsmessungen. Am Ende soll eine so genannte "p-i-n Solarzelle" als Prototyp vorliegen.
------------------------------------------------------------
Kontakte: Universität Bremen, Institut für Organische und Makromolekulare Chemie, Professor Dr. Dieter Wöhrle, Telefon: 04 21/2 18 28 05, Fax: 04 21/2 18 49 35

Universität Oldenburg, Physikalische Chemie 1, Dr. Derck Schlettwein, Telefon: 04 41/7 98 39 63, Fax: 04 41/7 98 28 09

TU Darmstadt, FB Material- und Geowissenschaften, Professor Dr. Wolfram Jaegermann/Dr. Thomas H. Mayer, Telefon: 0 61 51/16 63 04, Fax: 0 61 51/16 63 08

Hahn-Meitner-Institut in Berlin, Abteilung Solare Energetik
Dr. Marinus Kunst, Telefon: 0 30/80 62 29 23, Fax: 0 30/80 62 24 34

Über die drei weiteren in den Materialwissenschaften neu in die Förderung genommenen Vorhaben können Sie sich in Kürze auf unserer Homepage informieren in den Bewilligungslisten zum Schwerpunkt Komplexe Materialien.

Des Weiteren etabliert die VolkswagenStiftung eine Nachwuchsgruppe im Bereich der Werkstoffwissenschaften. Dr. Robert Magerle wird sich an der Universität Bayreuth mit zu verbessernden Abbildungsmöglichkeiten der Gefügestruktur eines Werkstoffs und dessen physikalischen Eigenschaften - wie zum Beispiel Härte und Festigkeit - beschäftigen. Moderne Werkstoffe weisen oft Gefügestrukturen im Nano- und Mikrometermaßstab auf, die sich mit den meisten der heute verfügbaren Mikroskopietechniken nur zweidimensional abbilden lassen. Dies behindert viele Untersuchungen und erschwert Aussagen etwa über die Struktur-Eigenschafts-Beziehungen der Werkstoffe. Abhilfe könnte hier die so genannte Nanotomographie schaffen: ein neues Abbildungsverfahren, das auf der Rastersondenmikroskopie beruht. Ziel der Nachwuchsgruppe ist es, mit Hilfe der Nanotomographie eine Vielzahl physikalischer Eigenschaften von Werkstoffen abzubilden sowie eine hoch auflösende Volumenabbildung und -charakterisierung zu etablieren. Ausgehend von ersten Arbeiten wird sich das Forscherteam auf eine derzeit besonders wichtige Materialklasse konzentrieren - die polymeren Werkstoffe. Da Synthese, Verarbeitung, Eigenschaften und Anwendungen polymerer Materialien zentrales Forschungsthema vieler Gruppen an der Universität Bayreuth sind, ist die Nachwuchsgruppe zugleich in ein exzellentes Forschungsumfeld eingebettet. Die VolkswagenStiftung unterstützt die Nachwuchsgruppe um Dr. Robert Magerle mit 1,18 Millionen Euro.
------------------------------------------------------------
Kontakt Nachwuchsgruppe: Universität Bayreuth, Physikalische Chemie II, Dr. Robert Magerle, Telefon: 09 21/55 26 41, Fax: 09 21/55 20 59
---------------------------------------------------------
Kontakt VolkswagenStiftung: Presse- und Öffentlichkeitsarbeit, Dr. Christian Jung, Telefon: 05 11/83 81 - 380, E-Mail: jung@volkswagenstiftung.de

Christian Jung | idw

Weitere Berichte zu: Gentherapie Nachwuchsgruppe Virus

Weitere Nachrichten aus der Kategorie Interdisziplinäre Forschung:

nachricht Neues Verbundprojekt erforscht die neurodegenerative Erkrankung Morbus Alzheimer
12.09.2017 | Universitätsklinikum Würzburg

nachricht Damit sich Mensch und Maschine besser verstehen
04.09.2017 | Technische Universität Chemnitz

Alle Nachrichten aus der Kategorie: Interdisziplinäre Forschung >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Posterblitz und neue Planeten

25.09.2017 | Veranstaltungen

Hochschule Karlsruhe richtet internationale Konferenz mit Schwerpunkt Informatik aus

25.09.2017 | Veranstaltungen

Junge Physiologen Tagen in Jena

25.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

25.09.2017 | Messenachrichten

Fraunhofer ISE steigert Weltrekord für multikristalline Siliciumsolarzelle auf 22,3 Prozent

25.09.2017 | Energie und Elektrotechnik

Die Parkinson-Krankheit verstehen – und stoppen: aktuelle Fortschritte

25.09.2017 | Medizin Gesundheit