Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

2 Millionen Euro für neue DFG-Forschergruppe. Neue Wege zur Therapie bösartiger Tumore

11.03.2002


Der breite Zugang zu gut wirksamen und verträglichen Arzneimitteln hat in den vergangenen 100 Jahren die Lebenserwartung und Lebensqualität der Menschen in den Industrieländern erheblich verbessert. Für einige schwerwiegende Erkrankungen fehlt aber noch immer eine befriedigende Therapie. So ist bislang die Behandlung von Krebserkrankungen (malignen Tumoren), Autoimmunerkrankungen (z.B. rheumatische Erkrankungen, Schuppenflechte), Infektionen mit Protozoen und Viren (Malaria, Toxoplasmose, AIDS), aber auch von neurodegenerativen Erkrankungen (Morbus Alzheimer, Morbus Parkinson), unzureichend. Die Entwicklung neuer und die Verbesserung herkömmlicher Arzneimittel steht deshalb heute im Mittelpunkt der pharmazeutischen Forschung.

Die Deutsche Forschungsgemeinschaft (DFG) richtet aus diesem Grund eine neue Forschergruppe "Innovative Arzneistoffe und Trägersysteme. Integrative Optimierung zur Behandlung entzündlicher und hyperproliferativer Erkrankungen" an der Freien Universität Berlin ein. Die beteiligten Wissenschaftler möchten durch Grundlagenforschung neue Wege zur Therapie bösartiger Tumore (z.B. Brust-, Prostatakrebs), aber auch von schweren Formen entzündlicher Hauterkrankungen, aufzeigen. Die Wirkstoffe verdienen aber auch zur Vermeidung der Transplantatabstoßung und beim Wiederverschluss der Herzkranzgefäße Interesse. Für ein gezieltes Hinführen zu ihrem Wirkort werden hoch spezialisierte Trägersysteme entwickelt. Bewilligt wurde die Forschergruppe für vorerst zwei Jahre. Eine Verlängerung von Seiten der DFG wurde schon jetzt in Aussicht gestellt. Die DFG stellt Mittel in Höhe von rund zwei Millionen Euro zur Verfügung: Davon werden zehn Stellen für Doktoranden, drei für promovierte Wissenschaftler, eineinhalb Stellen für technische Assistenz und zwei Stellen für studentische Hilfskräfte geschaffen; die restliche Summe in Höhe von ca. 500.000 Euro wird für Sachmittel zur Verfügung gestellt. Koordiniert wird die Forschergruppe, die aus acht einzelnen Projekten besteht, von Frau Professor Dr. Monika Schäfer-Korting vom Institut für Pharmazie der Freien Universität Berlin.

Anders als früher sind Pharmakologen und Mediziner heute oftmals in der Lage, durch interdisziplinäre Forschungen Arzneimittel für eine gezielte, ursachenorientierte Behandlung von Krankheiten zu entwickeln. Dabei können etablierte, aber auch innovative Wirkstoffe bzw. Therapiekonzepte eingesetzt werden. Hohe Bedeutung besitzen in diesem Zusammenhang neue Zielstrukturen (Targets) für Pharmaka auf genomischer und postgenomischer Ebene, die durch die Fortschritte der molekularen Medizin identifiziert werden konnten. Basierend auf der Kenntnis dieser Targets besteht die Möglichkeit zur Entwicklung hochaktiver Wirkstoffe. Diese allerdings weisen nicht selten Eigenschaften (geringe Selektivität, hohe Toxizität, geringe Stabilität, schlechte Löslichkeit) auf, die ihren Einsatz als Arzneimittel ausschließen oder zumindest erheblich erschweren. Als Problemlösungen bieten sich eine Optimierung der Struktur sowie ein Targeting durch moderne Trägersysteme an - ein bislang wenig verfolgter Ansatz.

Besonders vielversprechend erscheint die integrative Optimierung von Arzneistoff und Trägersystem. Diese wechselseitige Anpassung soll vor dem Hintergrund der Zielstruktur bzw. der spezifischen pathophysiologischen Veränderungen des erkrankten Gewebes zu Arzneimitteln höchster Wirksamkeit und bester Verträglichkeit führen. Essentiell dafür ist die intensive Rückkopplung zwischen den beteiligten Entwicklungsbereichen.

Pharmazeuten, Biochemiker, Humanmediziner, Chemiker und Physiker werden nun im Rahmen der DFG-Forschergruppe der Entwicklung neuer Wege für eine gezielte Arzneimitteltherapie entzündlicher und hyperproliferativer (z.B. neoplastischer) Erkrankungen widmen. Neue Arzneistoffe sollen gefunden und deren Wirksamkeit mittels eines selektiven Targetings bzw. einer gesteuerten Arzneistofffreisetzung maximiert werden. Als Trägersysteme kommen Liposomen, Lipidnanopartikel, Polymere bzw. Nanosuspensionen als Wirkstoffformulierung in Frage. Für industrielle Einrichtungen ist die Umsetzung dieses Konzeptes nicht realisierbar, da die Vielzahl der dabei zu lösenden Probleme eine komplexe Grundlagenforschung erfordert.

Wirkstoffe, die in der geplanten Forschergruppe untersucht werden sollen, leiten sich vielfach von körpereigenen Strukturen - Fetten (Lipiden) und Zuckern - ab, so dass lipidbasierte Trägersysteme mit oder ohne modifizierte(r) Oberflächenstruktur vielversprechend erscheinen, um ein Targeting bzw. die Überwindung von Barrieren zu erreichen. Eine gezielte Oberflächenmodifikation erleichtert z.B. die Aufnahme in das Gehirn über die Wechselwirkung der partikulären Träger mit spezifischen Rezeptoren von Hirnkapillaren. Auch zur Applikation von Wirkstoffen anderer Art, z.B. von Hormonen und neuen Wirkstoffen gegen Infektionskrankheiten, eignen sich diese Träger.

Eine neue Strategie, antitumorale Arzneimittel hoher Bioverfügbarkeit zu erhalten, ist z.B. die Bindung des Wirkstoffs an synthetische Polymere (Dendrimere). Dies erlaubt eine gezielte Aufnahme und Freisetzung des Wirkstoffs im Tumor und gewährleistet eine nebenwirkungsarme Therapie. Bei gleichzeitiger Minimierung von Arzneistoff-bedingten Risiken ist so eine gute Wirksamkeit zu erzielen. Daher gilt es, die Träger weiterzuentwickeln und für die Wirkstoffe maßzuschneidern. Eine Modifikation des Wirkstoffs muss erfolgen, sofern besonders geeignete Träger eine strukturelle Anpassung erfordern. Ausgehend von den optimierten Wirkstoff/Träger-Systemen wird die spezifische Wechselwirkung von Träger, Wirkstoff und Target verfolgt. Dazu bedarf es der Weiterentwicklung physikalischer Messmethoden.

Die Forschergruppe gliedert sich in acht Teilprojekte:

  1. "Optimierung von Zytostatika durch Entwicklung neuartiger Zytostatika-Dendrimer-Konjugate": Prof. Dr. Ronald Gust (Institut für Pharmazie, Freie Universität Berlin) und Prof. Dr. Arnulf Dieter Schlüter (Institut für Chemie/Anorganische Chemie, Freie Universität Berlin)
  2. Neuartige glycosidierte Phospho-lipidanaloga als topische Dermatika und Inhibitoren des Tumorwachstums": Dr. Kerstin Danker und Prof. Dr. Werner Reutter (beide Institut für Molekularbiologie und Biochemie, Freie Universität Berlin)
  3. "Sphingosin-1-phosphat und Analoga in der Therapie hyperproliferierender Hautkrankheiten. Untersuchungen zu Signalwegen sowie Penetration und Wirksamkeit in Abhängigkeit von Trägersystemen": Dr. Burkhard Kleuser, (Institut für Pharmazie/Pharmakologie, Freie Universität Berlin), Prof. Dr. Hans-Ulrich Reißig (Institut für Chemie/Organische Chemie, Freie Universität Berlin)
  4. "Lipidbasierte Trägersysteme zur optimierten kutanen und transdermalen Wirkstoffapplikation": Prof. Dr. Monika Schäfer-Korting (Institut für Pharmazie/Pharmakologie, Freie Universität Berlin), Prof. Dr. Hans Christian Korting (Dermatologische Klinik, Ludwig-Maximilians-Universität München) und Dr. Wolfgang Mehnert (Institut für Pharmazie/Pharmazeutische Technologie, Freie Universität Berlin)
  5. "L-Selektin-Inhibitoren und lösliche L-Selektin-Formen zur Behandlung entzündlicher Erkrankungen": Prof. Dr. Rudolf Tauber (Institut für Chemie/Klinische Chemie und Pathobiochemie, Freie Universität Berlin)
  6. "Apolipoprotein-E-Peptide als Vektoren für eine Wirkstoffaufnahme in Hirnendothelzellen": Dr. Margitta Dathe (Forschungsinstitut für Molekulare Pharmakologie, Berlin) und Prof. Dr. Oliver Liesenfeld (Institut für Infektionsmedizin, Freie Universität Berlin)
  7. "In-situ Bildung bioabbaubarer Polymermikropartikel": Prof. Dr. Roland Bodmeier (Institut für Pharmazie/Pharmazeutische Technologie, Freie Universität Berlin)
  8. "Charakterisierung struktureller und dynamischer Parameter von Nano- und Mikropartikeloberflächen sowie deren Wechselwirkungen mit Targetmembranen": Prof. Dr. Horst Niehus (Institut für Physik/Oberflächenphysik und Atomstoßprozesse), Prof. Dr. Klaus D. Kramer (Institut für Experimentalphysik, Freie Universität Berlin)

Weitere Informationen erteilt Ihnen gern:
Prof. Dr. Monika Schäfer-Korting, Institut für Pharmazie der Freien Universität Berlin, Königin-Luise-Str. 2-4, 14195 Berlin, Tel.: 030 / 838-53283, E-Mail: msk@zedat.fu-berlin.de

Hedwig Görgen | idw

Weitere Berichte zu: Arzneimittel Arzneistoff DFG Pharmazie Trägersystem Wechselwirkung Wirkstoff

Weitere Nachrichten aus der Kategorie Interdisziplinäre Forschung:

nachricht Neues interdisziplinäres Zentrum für Physik und Medizin in Erlangen
25.07.2017 | Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.

nachricht Entzündungshemmende Birkeninhaltsstoffe nachhaltig nutzen
03.07.2017 | Christian-Albrechts-Universität zu Kiel

Alle Nachrichten aus der Kategorie: Interdisziplinäre Forschung >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Wissenschaftler beleuchten den „anderen Hochtemperatur-Supraleiter“

Eine von Wissenschaftlern des Max-Planck-Instituts für Struktur und Dynamik der Materie (MPSD) geleitete Studie zeigt, dass Supraleitung und Ladungsdichtewellen in Verbindungen der wenig untersuchten Familie der Bismutate koexistieren können.

Diese Beobachtung eröffnet neue Perspektiven für ein vertieftes Verständnis des Phänomens der Hochtemperatur-Supraleitung, ein Thema, welches die Forschung der...

Im Focus: Tests der Quantenmechanik mit massiven Teilchen

Quantenmechanische Teilchen können sich wie Wellen verhalten und mehrere Wege gleichzeitig nehmen, um an ihr Ziel zu gelangen. Dieses Prinzip basiert auf Borns Regel, einem Grundpfeiler der Quantenmechanik; eine mögliche Abweichung hätte weitreichende Folgen und könnte ein Indikator für neue Phänomene in der Physik sein. WissenschafterInnen der Universität Wien und Tel Aviv haben nun diese Regel explizit mit Materiewellen überprüft, indem sie massive Teilchen an einer Kombination aus Einzel-, Doppel- und Dreifachspalten interferierten. Die Analyse bestätigt den Formalismus der etablierten Quantenmechanik und wurde im Journal "Science Advances" publiziert.

Die Quantenmechanik beschreibt sehr erfolgreich das Verhalten von Partikeln auf den kleinsten Masse- und Längenskalen. Die offensichtliche Unvereinbarkeit...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

Sensibilisierungskampagne zu Pilzinfektionen

15.08.2017 | Veranstaltungen

Anbausysteme im Wandel: Europäische Ackerbaubetriebe müssen sich anpassen

15.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Neue Einblicke in die Welt der Trypanosomen

16.08.2017 | Biowissenschaften Chemie

Maschinensteuerung an Anwender: Intelligentes System für mobile Endgeräte in der Fertigung

16.08.2017 | Informationstechnologie

Komfortable Software für die Genomanalyse

16.08.2017 | Informationstechnologie