Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Stickstoffmonoxid geht im Körper andere Wege als bislang vermutet

08.03.2002


Das Gas Stickstoffmonoxid (NO) mischt im Körper des Menschen an vielen Stellen mit: Es entspannt die glatte Muskulatur, erweitert die Blutgefäße oder wirkt der Entstehung von Blutgerinnseln entgegen. Die bislang verbreitete Vorstellung über die Arbeitsweise dieses Botenstoffs muss nun ergänzt werden. Das haben Wissenschaftler von den Universitäten Würzburg und Gießen herausgefunden. Ihre Ergebnisse stellen sie in der Zeitschrift "Nature Cell Biology" vor.

Es ist kein Wunder, dass Forscher genau wissen wollen, wie Stickstoffmonoxid im Körper wirkt - schließlich kommt dieses Gas für die Behandlung von Krankheiten in Frage. Beispiel: Ein Herzpatient bekämpft seine Angina pectoris mit einem Nitrospray. Aus diesem Mittel wird in seinem Körper NO freigesetzt: Die Herzkranzgefäße erweitern sich, das Engegefühl in der Brust verschwindet.

Die Forschung kann umso gezielter Medikamente entwickeln, je besser sie die Abläufe im Organismus kennt. Was das Stickstoffmonoxid angeht, so herrschte bisher folgende Überzeugung vor: NO kann im Körper problemlos durch die Zellmembranen hindurchtreten und im Inneren der Zellen seinen Rezeptor erreichen. Dieser wird aktiviert und erhöht darauf hin die Konzentration eines zweiten Botenstoffes (cGMP). Dadurch werden Prozesse angestoßen, die letztlich für die spezifische Wirkung von NO verantwortlich sind.

Dr. Christoph Kleinschnitz von der Neurologischen Klinik der Uni Würzburg: "Es gab Hinweise darauf, dass dieses klassische Konzept nicht ganz richtig sein kann, etwa die Tatsache, dass Stickstoffmonoxid in einer Zellmembran besser löslich ist als im Zellinneren." Salopp gesagt: Das stickstoffhaltige Gas hält sich vermutlich viel lieber in der Zellmembran auf und macht sich eher ungern auf die Suche nach seinem Rezeptor im Inneren der Zelle.

Darum beschlossen Würzburger und Gießener Wissenschaftler zusammen mit Kollegen aus San Diego, das Konzept der Wirkungsweise von NO zu überprüfen. Sie fanden heraus, dass der NO-Rezeptor, die lösliche Guanylylcyclase, keineswegs ein rein lösliches Protein ist, wie man seit mehr als 20 Jahren meinte. Stattdessen ist der Rezeptor in vielen Zellverbänden von Mensch und Tier - etwa in der Blutgefäßwand, im Herzmuskel und in Blutplättchen - zu einem gewissen Teil mit der Zellmembran verbunden.

Dort befindet sich der Rezeptor in unmittelbarer Nachbarschaft zu den Enzymen, die Stickstoffmonoxid produzieren. Diese räumliche Nähe ist sinnvoll, weil NO ja die Membran nicht so gerne verlässt und weil es zudem nicht sonderlich stabil ist und schnell zerfällt. Außerdem fanden die Forscher heraus, dass der mit einer Membran verknüpfte Rezeptor viel empfindlicher auf NO reagiert als der lösliche Rezeptor.

Der Artikel "Calcium-dependent membrane association sensitizes soluble guanylyl cyclase to nitric oxide" von Ulrike Zabel, Christoph Kleinschnitz, Oh Phil, Pavel Nedvedsky, Albert Smolenski, Helmut Müller, Petra Kronich, Peter Kugler, Ulrich Walter, Jan E. Schnitzer und Harald H. H. W. Schmidt, wurde in der Online-Version von "Nature Cell Biology" vorab am 4. März 2002 publiziert. In gedruckter Form wird er im April erscheinen.

Robert Emmerich | idw

Weitere Berichte zu: Biology Rezeptor Stickstoffmonoxid Zellmembran

Weitere Nachrichten aus der Kategorie Interdisziplinäre Forschung:

nachricht Innovation: Optische Technologien verändern die Welt
01.12.2016 | Karlsruher Institut für Technologie

nachricht SeaArt-Projekt startet mit Feldversuchen an Nord- und Ostsee
18.11.2016 | Hochschule Hannover

Alle Nachrichten aus der Kategorie: Interdisziplinäre Forschung >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Forscher finden «Krebssignatur» in Proteinen

05.12.2016 | Biowissenschaften Chemie

Wichtiger Prozess für Wolkenbildung aus Gasen entschlüsselt

05.12.2016 | Geowissenschaften

Frühwarnsignale für Seen halten nicht, was sie versprechen

05.12.2016 | Ökologie Umwelt- Naturschutz