Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Stickstoffmonoxid geht im Körper andere Wege als bislang vermutet

08.03.2002


Das Gas Stickstoffmonoxid (NO) mischt im Körper des Menschen an vielen Stellen mit: Es entspannt die glatte Muskulatur, erweitert die Blutgefäße oder wirkt der Entstehung von Blutgerinnseln entgegen. Die bislang verbreitete Vorstellung über die Arbeitsweise dieses Botenstoffs muss nun ergänzt werden. Das haben Wissenschaftler von den Universitäten Würzburg und Gießen herausgefunden. Ihre Ergebnisse stellen sie in der Zeitschrift "Nature Cell Biology" vor.

Es ist kein Wunder, dass Forscher genau wissen wollen, wie Stickstoffmonoxid im Körper wirkt - schließlich kommt dieses Gas für die Behandlung von Krankheiten in Frage. Beispiel: Ein Herzpatient bekämpft seine Angina pectoris mit einem Nitrospray. Aus diesem Mittel wird in seinem Körper NO freigesetzt: Die Herzkranzgefäße erweitern sich, das Engegefühl in der Brust verschwindet.

Die Forschung kann umso gezielter Medikamente entwickeln, je besser sie die Abläufe im Organismus kennt. Was das Stickstoffmonoxid angeht, so herrschte bisher folgende Überzeugung vor: NO kann im Körper problemlos durch die Zellmembranen hindurchtreten und im Inneren der Zellen seinen Rezeptor erreichen. Dieser wird aktiviert und erhöht darauf hin die Konzentration eines zweiten Botenstoffes (cGMP). Dadurch werden Prozesse angestoßen, die letztlich für die spezifische Wirkung von NO verantwortlich sind.

Dr. Christoph Kleinschnitz von der Neurologischen Klinik der Uni Würzburg: "Es gab Hinweise darauf, dass dieses klassische Konzept nicht ganz richtig sein kann, etwa die Tatsache, dass Stickstoffmonoxid in einer Zellmembran besser löslich ist als im Zellinneren." Salopp gesagt: Das stickstoffhaltige Gas hält sich vermutlich viel lieber in der Zellmembran auf und macht sich eher ungern auf die Suche nach seinem Rezeptor im Inneren der Zelle.

Darum beschlossen Würzburger und Gießener Wissenschaftler zusammen mit Kollegen aus San Diego, das Konzept der Wirkungsweise von NO zu überprüfen. Sie fanden heraus, dass der NO-Rezeptor, die lösliche Guanylylcyclase, keineswegs ein rein lösliches Protein ist, wie man seit mehr als 20 Jahren meinte. Stattdessen ist der Rezeptor in vielen Zellverbänden von Mensch und Tier - etwa in der Blutgefäßwand, im Herzmuskel und in Blutplättchen - zu einem gewissen Teil mit der Zellmembran verbunden.

Dort befindet sich der Rezeptor in unmittelbarer Nachbarschaft zu den Enzymen, die Stickstoffmonoxid produzieren. Diese räumliche Nähe ist sinnvoll, weil NO ja die Membran nicht so gerne verlässt und weil es zudem nicht sonderlich stabil ist und schnell zerfällt. Außerdem fanden die Forscher heraus, dass der mit einer Membran verknüpfte Rezeptor viel empfindlicher auf NO reagiert als der lösliche Rezeptor.

Der Artikel "Calcium-dependent membrane association sensitizes soluble guanylyl cyclase to nitric oxide" von Ulrike Zabel, Christoph Kleinschnitz, Oh Phil, Pavel Nedvedsky, Albert Smolenski, Helmut Müller, Petra Kronich, Peter Kugler, Ulrich Walter, Jan E. Schnitzer und Harald H. H. W. Schmidt, wurde in der Online-Version von "Nature Cell Biology" vorab am 4. März 2002 publiziert. In gedruckter Form wird er im April erscheinen.

Robert Emmerich | idw

Weitere Berichte zu: Biology Rezeptor Stickstoffmonoxid Zellmembran

Weitere Nachrichten aus der Kategorie Interdisziplinäre Forschung:

nachricht Blick unter den Gletscher
12.06.2017 | Universität Bern

nachricht ROBOLAB generiert neue Forschungsansätze und Kooperationen
08.05.2017 | Hochschule Mainz

Alle Nachrichten aus der Kategorie: Interdisziplinäre Forschung >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorbild Delfinhaut: Elastisches Material vermindert Reibungswiderstand bei Schiffen

Für eine elegante und ökonomische Fortbewegung im Wasser geben Delfine den Wissenschaftlern ein exzellentes Vorbild. Die flinken Säuger erzielen erstaunliche Schwimmleistungen, deren Ursachen einerseits in der Körperform und andererseits in den elastischen Eigenschaften ihrer Haut zu finden sind. Letzteres Phänomen ist bereits seit Mitte des vorigen Jahrhunderts bekannt, konnte aber bislang nicht erfolgreich auf technische Anwendungen übertragen werden. Experten des Fraunhofer IFAM und der HSVA GmbH haben nun gemeinsam mit zwei weiteren Forschungspartnern eine Oberflächenbeschichtung entwickelt, die ähnlich wie die Delfinhaut den Strömungswiderstand im Wasser messbar verringert.

Delfine haben eine glatte Haut mit einer darunter liegenden dicken, nachgiebigen Speckschicht. Diese speziellen Hauteigenschaften führen zu einer signifikanten...

Im Focus: Kaltes Wasser: Und es bewegt sich doch!

Bei minus 150 Grad Celsius flüssiges Wasser beobachten, das beherrschen Chemiker der Universität Innsbruck. Nun haben sie gemeinsam mit Forschern in Schweden und Deutschland experimentell nachgewiesen, dass zwei unterschiedliche Formen von Wasser existieren, die sich in Struktur und Dichte stark unterscheiden.

Die Wissenschaft sucht seit langem nach dem Grund, warum ausgerechnet Wasser das Molekül des Lebens ist. Mit ausgefeilten Techniken gelingt es Forschern am...

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationale Konferenz zu aktuellen Fragen der Stammzellforschung

27.06.2017 | Veranstaltungen

Fraunhofer FKIE ist Gastgeber für internationale Experten Digitaler Mensch-Modelle

27.06.2017 | Veranstaltungen

Future Security Conference 2017 in Nürnberg - Call for Papers bis 31. Juli

26.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Vorbild Delfinhaut: Elastisches Material vermindert Reibungswiderstand bei Schiffen

27.06.2017 | Materialwissenschaften

Kaltes Wasser: Und es bewegt sich doch!

27.06.2017 | Biowissenschaften Chemie

Weniger Schadstoffe im Heizkessel: Smartes Verbrennungskonzept vermindert Schadstoffemissionen

27.06.2017 | Energie und Elektrotechnik