Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein Meilenstein der Gedächtnisforschung

07.11.2001


Wer kennt das nicht: Auf einer Party werden uns eine Reihe von Personen vorgestellt, doch im Gedächtnis bleiben uns nur zwei oder drei Namen - der Rest ist für unser Gehirn "Schall und Rauch". Aber was muss in unserem Kopf passieren, damit wir uns später an einen Namen, eine Telefonnummer oder ein Gesicht erinnern und es nicht sofort wieder vergessen? Bonner Wissenschaftler sind der Antwort auf diese Frage einen bedeutenden Schritt näher gekommen. Sie untersuchten bei Epilepsie-Patienten die elektrische Aktivität zweier benachbarter Hirnregionen. Ergebnis: Wenn wir uns später erinnern sollen, müssen die beiden Areale Hand in Hand arbeiten. Die Studie wird in der Dezemberausgabe von Nature Neuroscience veröffentlicht.

Die anatomischen Strukturen, die über Erinnern oder Vergessen entscheiden, liegen in der Tiefe des Schläffenlappens: der sogenannte "Hippokampus" und der "rhinale Kortex". Die Regionen, die lediglich 15 Millimeter auseinander liegen, spielen bei der Gedächtnisbildung eine bedeutende Rolle: Wird eine der beiden Strukturen verletzt, kann die betroffene Person keine neuen Erinnerungen speichern.

Dr. Jürgen Fell und seine Kollegen von der Arbeitsgruppe für kognitive Neurophysiologie unter Leitung von Dr. Guillén Fernández nahmen daher diese "Gedächtnis-Regionen" genauer unter die Lupe. Normalerweise kleben die Mediziner bei derartigen Untersuchungen ihren Versuchspersonen Elektroden auf die Schädeldecke, mit deren Hilfe sie die elektrische Aktivität messen können. Der geringe Abstand von Hippokampus und rhinalem Kortex macht jedoch getrennte Messungen mit Hilfe solcher "Oberflächen-Elektroden" unmöglich.

Bei Patienten mit schweren Epilepsien implantiert man jedoch aus medizinischen Gründen Elektroden direkt in das Gehirn und versucht so, die "Fallsucht" in den Griff zu bekommen. Fell und Fernández untersuchten eine Gruppe von neun Epilepsie-Patienten, denen derartige "Tiefenelektroden" in den mittleren Schläfenlappen implantiert worden waren. Den Wissenschaftlern gelang es so, das Hirnstrom-Muster der beiden Gedächtnis-Regionen aufzuzeichnen. Währenddessen präsentierten sie den Versuchspersonen eine Reihe von Wörtern, die sie sich einprägen sollten. Waren die Hirnströme in den beiden untersuchten Regionen für wenige hundert Millisekunden genau im Gleichtakt, also synchronisiert, konnten die Probanden sich später an das zu dieser Zeit gezeigte Wort erinnern.

Nach Ansicht der Bonner Wissenschaftler spricht die Synchronisation der Hirnströme für eine Zusammenarbeit von rhinalem Kortex und Hippokampus. Man nimmt heute an, dass verschiedene Aspekte eines Sinneseindrucks in unterschiedlichen Hirnregionen verarbeitet werden: Betrachtet man beispielsweise einen grünen Ball, so wird die Information für die Farbe "grün" von anderen Nervenzellen ausgewertet als die Information für die Form "Kugel". Im rhinalen Kortex werden die verschiedenen Aspekte wieder zusammengefügt und im Zusammenspiel mit dem Hippokampus ins Gedächtnis überführt.

Bei ihren amerikanischen Fachkollegen ernteten die Bonner Hirnforscher bereits höchstes Lob für ihre Studien: Der Hirnforscher Anthony Wagner vom Massachusetts Institute of Technology (M.I.T.) bezeichnet die Ergebnisse als "Meilenstein" in der Gedächtnisforschung.

Frank Luerweg | idw
Weitere Informationen:
http://www.verwaltung.uni-bonn.de/presse/gedaechtnis.pdf
http://www.meb.uni-bonn.de/epileptologie/staff/fell/fell.htm
http://www.meb.uni-bonn.de/epileptologie/staff/fernandez/fernandez.htm

Weitere Berichte zu: Gedächtnisforschung Hippocampus Hirnströme Kortex Meilenstein

Weitere Nachrichten aus der Kategorie Interdisziplinäre Forschung:

nachricht Lösung gegen Schwefelsäureangriff auf Abwasseranlagen
23.02.2018 | Technische Universität Graz

nachricht Forschende der Uni Kiel entwickeln extrem empfindliches Sensorsystem für Magnetfelder
15.02.2018 | Christian-Albrechts-Universität zu Kiel

Alle Nachrichten aus der Kategorie: Interdisziplinäre Forschung >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics