Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ist "DREI" oder "drei" die größere Zahl? Hirnforschung sucht nach Antworten

10.04.2006


Wie verarbeiten wir Zahlen? Der komplexen Antwort auf diese scheinbar simple Frage nähert sich ein neues Projekt des Wissenschaftsfonds FWF an. Das Projekt baut dabei auf jüngste Ergebnisse einer Arbeitsgruppe aus Innsbruck. Diese belegen, dass Kinder und Erwachsene Zahlen zwar gleich gut verarbeiten, dafür aber jeweils andere Regionen des Hirns nutzen. Im neuen Projekt werden nun die Hirnaktivitäten von Kindern mit und ohne Rechenstörungen verglichen und so noch detailliertere Erkenntnisse über die Vorgänge bei der numerischen und räumlichen Mengenverarbeitung von Kindern geschaffen.

Was ist mehr: 15 Smarties oder 5 Spielzeug-Autos? Selbst wenn die Bedeutung von "mehr" auf die Anzahl der Objekte reduziert wird, erfordert die Beantwortung dieser Frage eine beachtliche Abstraktionsleistung unseres Hirns. Denn die räumliche Ausdehnung der Objekte muss von ihrer Anzahl getrennt werden. 15 Smarties nehmen zwar weniger Raum ein, sind aber trotzdem "mehr" als 5 Spielzeug-Autos.

Rechnen ist Teamwork

Für Dr. Liane Kaufmann, Medizinische Universität Innsbruck, Klinische Abteilung für Allgemeine Pädiatrie, ist die Beantwortung einer solchen Frage ein typisches Zahlenproblem. Dazu Dr. Kaufmann: "Für das Hirn ist Rechnen ein Mannschaftssport. Denn gute Rechenfertigkeiten erfordern das reibungslose Zusammenspiel verschiedener Funktionsbereiche. Mathematische Aufgaben erfordern nicht nur numerische Fähigkeiten, sondern auch nicht-numerische, wie zum Beispiel räumliche Denkprozesse."

Dieses Zusammenspiel, so zeigen jetzt veröffentlichte Daten des Teams um Dr. Kaufmann, ändert sich aber im Laufe der Entwicklung eines Menschen. Selbst zur Lösung einfacher Zahlenprobleme werden beim Erwachsenen andere Hirnareale aktiviert als bei Kindern. Nutzen die Erwachsenen vornehmlich die seitlichen Areale, sind es bei den Kindern die frontalen Hirnregionen. Für Dr. Kaufmann ein klarer Hinweis auf die wesentlich komplexer ablaufende Informationsverarbeitung bei Kindern, die sich aber überraschenderweise nicht auf die Geschwindigkeit und Genauigkeit der Problemlösungen auswirken.

Manchmal rechnet sich’s nicht

Zur weiteren Erforschung der Hirnaktivitäten nützt Dr. Kaufmann ihren Hertha-Firnberg-Preis des Jahres 2005. Dieser erlaubt ihr, ein spezielles Augenmerk auf Kinder mit ausgeprägten Rechenstörungen zu richten. Dieses als Dyskalkulie bezeichnete Phänomen ist tatsächlich ebenso häufig wie Lese-Rechtschreib-Störungen (z.B. Dyslexie oder Legasthenie). Drei bis sechs Prozent der Grundschüler sind betroffen. Die Ursachen von Dyskalkulien sind zwar vielfältig, doch konzentriert Dr. Kaufmann ihre Untersuchungen auf jene Form, die mit bestimmten Erberkrankungen einhergeht.

Dazu Dr. Kaufmann: "Seit einiger Zeit wissen wir, dass bestimmte genetische Störungen wie das Turner-Syndrom, das Fragile-X-Syndrom und das Williams-Syndrom als häufiges Begleitsymptom auch Rechenstörungen aufweisen. Da die betroffenen Personen auch Probleme mit dem räumlichen Mengenverständnis haben, können wir durch genaues Beobachten ihrer Hirnaktivitäten viel über die Zusammenhänge zwischen diesen beiden Fähigkeiten lernen."

Wesentliches Werkzeug für die Arbeiten der Gruppe um Dr. Kaufmann ist die funktionelle Magnetresonanztomographie. Diese Methode erlaubt die Visualisierung des Sauerstoffverbrauchs von Hirnzellen und liefert damit ein Bild der Aktivitäten verschiedener Hirnareale. Zusammen mit der Analyse von Verhaltensdaten wie der Genauigkeit und Geschwindigkeit bei der Lösung von Zahlenproblemen können so Rückschlüsse auf die funktionelle Koordination verschiedener Hirnbereiche gezogen werden. Dabei vergleicht Dr. Kaufmann in ihrer umfassenden Analyse Kinder mit und ohne Rechenstörungen. Zusätzlich differenziert sie zwischen erblich bedingten Dyskalkulien und solchen, die als isolierte Lernstörungen ohne organische Befunde auftreten.

Das nun begonnene FWF-Projekt wird mit seiner Fragestellung zu einem besseren Verständnis der funktionellen Organisation unseres Hirns und der Vorgänge während der Zahlenverarbeitung und des Rechnens beitragen. Zusätzlich sollen die Ergebnisse auch ein Ansatzpunkt für die Planung von effektiven Interventionsprogrammen für Kinder mit Dyskalkulie sein.



Wissenschaftlicher Kontakt:


Dr. Liane Kaufmann
Medizinische Universität Innsbruck
Klinische Abteilung für Allgemeine Pädiatrie

Anichstraße 35
A-6020 Innsbruck
T +43 / 512 / 504 - 25 439
E liane.kaufmann@uibk.ac.at

Der Wissenschaftsfonds
FWF: Mag. Stefan Bernhardt
Weyringergasse 35
A-1040 Wien
T +43 / 1 / 505 67 40-36
E bernhardt@fwf.ac.at

Redaktion & Aussendung:
PR&D - Public Relations for Research & Development
Campus Vienna Biocenter 2
A-1030 Wien
T +43 / 1 / 505 70 44
E contact@prd.at

Mag. Stefan Bernhardt | PR&D
Weitere Informationen:
http://www.fwf.ac.at
http://www.prd.at
http://www.uibk.ac.at

Weitere Berichte zu: Hirn Hirnaktivität Rechenstörung Zahlenproblem

Weitere Nachrichten aus der Kategorie Interdisziplinäre Forschung:

nachricht Speiseröhrenkrebs einfacher erkennen
06.03.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Neues Labor für die Aufbautechnik von ultradünnen Mikrosystemen
21.02.2017 | Hahn-Schickard

Alle Nachrichten aus der Kategorie: Interdisziplinäre Forschung >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Clevere Folien voller Quantenpunkte

27.03.2017 | Materialwissenschaften

In einem Quantenrennen ist jeder Gewinner und Verlierer zugleich

27.03.2017 | Physik Astronomie

Klimakiller Kuh: Methan-Ausstoß von Vieh könnte bis 2050 um über 70 Prozent steigen

27.03.2017 | Biowissenschaften Chemie