Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ist "DREI" oder "drei" die größere Zahl? Hirnforschung sucht nach Antworten

10.04.2006


Wie verarbeiten wir Zahlen? Der komplexen Antwort auf diese scheinbar simple Frage nähert sich ein neues Projekt des Wissenschaftsfonds FWF an. Das Projekt baut dabei auf jüngste Ergebnisse einer Arbeitsgruppe aus Innsbruck. Diese belegen, dass Kinder und Erwachsene Zahlen zwar gleich gut verarbeiten, dafür aber jeweils andere Regionen des Hirns nutzen. Im neuen Projekt werden nun die Hirnaktivitäten von Kindern mit und ohne Rechenstörungen verglichen und so noch detailliertere Erkenntnisse über die Vorgänge bei der numerischen und räumlichen Mengenverarbeitung von Kindern geschaffen.

Was ist mehr: 15 Smarties oder 5 Spielzeug-Autos? Selbst wenn die Bedeutung von "mehr" auf die Anzahl der Objekte reduziert wird, erfordert die Beantwortung dieser Frage eine beachtliche Abstraktionsleistung unseres Hirns. Denn die räumliche Ausdehnung der Objekte muss von ihrer Anzahl getrennt werden. 15 Smarties nehmen zwar weniger Raum ein, sind aber trotzdem "mehr" als 5 Spielzeug-Autos.

Rechnen ist Teamwork

Für Dr. Liane Kaufmann, Medizinische Universität Innsbruck, Klinische Abteilung für Allgemeine Pädiatrie, ist die Beantwortung einer solchen Frage ein typisches Zahlenproblem. Dazu Dr. Kaufmann: "Für das Hirn ist Rechnen ein Mannschaftssport. Denn gute Rechenfertigkeiten erfordern das reibungslose Zusammenspiel verschiedener Funktionsbereiche. Mathematische Aufgaben erfordern nicht nur numerische Fähigkeiten, sondern auch nicht-numerische, wie zum Beispiel räumliche Denkprozesse."

Dieses Zusammenspiel, so zeigen jetzt veröffentlichte Daten des Teams um Dr. Kaufmann, ändert sich aber im Laufe der Entwicklung eines Menschen. Selbst zur Lösung einfacher Zahlenprobleme werden beim Erwachsenen andere Hirnareale aktiviert als bei Kindern. Nutzen die Erwachsenen vornehmlich die seitlichen Areale, sind es bei den Kindern die frontalen Hirnregionen. Für Dr. Kaufmann ein klarer Hinweis auf die wesentlich komplexer ablaufende Informationsverarbeitung bei Kindern, die sich aber überraschenderweise nicht auf die Geschwindigkeit und Genauigkeit der Problemlösungen auswirken.

Manchmal rechnet sich’s nicht

Zur weiteren Erforschung der Hirnaktivitäten nützt Dr. Kaufmann ihren Hertha-Firnberg-Preis des Jahres 2005. Dieser erlaubt ihr, ein spezielles Augenmerk auf Kinder mit ausgeprägten Rechenstörungen zu richten. Dieses als Dyskalkulie bezeichnete Phänomen ist tatsächlich ebenso häufig wie Lese-Rechtschreib-Störungen (z.B. Dyslexie oder Legasthenie). Drei bis sechs Prozent der Grundschüler sind betroffen. Die Ursachen von Dyskalkulien sind zwar vielfältig, doch konzentriert Dr. Kaufmann ihre Untersuchungen auf jene Form, die mit bestimmten Erberkrankungen einhergeht.

Dazu Dr. Kaufmann: "Seit einiger Zeit wissen wir, dass bestimmte genetische Störungen wie das Turner-Syndrom, das Fragile-X-Syndrom und das Williams-Syndrom als häufiges Begleitsymptom auch Rechenstörungen aufweisen. Da die betroffenen Personen auch Probleme mit dem räumlichen Mengenverständnis haben, können wir durch genaues Beobachten ihrer Hirnaktivitäten viel über die Zusammenhänge zwischen diesen beiden Fähigkeiten lernen."

Wesentliches Werkzeug für die Arbeiten der Gruppe um Dr. Kaufmann ist die funktionelle Magnetresonanztomographie. Diese Methode erlaubt die Visualisierung des Sauerstoffverbrauchs von Hirnzellen und liefert damit ein Bild der Aktivitäten verschiedener Hirnareale. Zusammen mit der Analyse von Verhaltensdaten wie der Genauigkeit und Geschwindigkeit bei der Lösung von Zahlenproblemen können so Rückschlüsse auf die funktionelle Koordination verschiedener Hirnbereiche gezogen werden. Dabei vergleicht Dr. Kaufmann in ihrer umfassenden Analyse Kinder mit und ohne Rechenstörungen. Zusätzlich differenziert sie zwischen erblich bedingten Dyskalkulien und solchen, die als isolierte Lernstörungen ohne organische Befunde auftreten.

Das nun begonnene FWF-Projekt wird mit seiner Fragestellung zu einem besseren Verständnis der funktionellen Organisation unseres Hirns und der Vorgänge während der Zahlenverarbeitung und des Rechnens beitragen. Zusätzlich sollen die Ergebnisse auch ein Ansatzpunkt für die Planung von effektiven Interventionsprogrammen für Kinder mit Dyskalkulie sein.



Wissenschaftlicher Kontakt:


Dr. Liane Kaufmann
Medizinische Universität Innsbruck
Klinische Abteilung für Allgemeine Pädiatrie

Anichstraße 35
A-6020 Innsbruck
T +43 / 512 / 504 - 25 439
E liane.kaufmann@uibk.ac.at

Der Wissenschaftsfonds
FWF: Mag. Stefan Bernhardt
Weyringergasse 35
A-1040 Wien
T +43 / 1 / 505 67 40-36
E bernhardt@fwf.ac.at

Redaktion & Aussendung:
PR&D - Public Relations for Research & Development
Campus Vienna Biocenter 2
A-1030 Wien
T +43 / 1 / 505 70 44
E contact@prd.at

Mag. Stefan Bernhardt | PR&D
Weitere Informationen:
http://www.fwf.ac.at
http://www.prd.at
http://www.uibk.ac.at

Weitere Berichte zu: Hirn Hirnaktivität Rechenstörung Zahlenproblem

Weitere Nachrichten aus der Kategorie Interdisziplinäre Forschung:

nachricht Neues interdisziplinäres Zentrum für Physik und Medizin in Erlangen
25.07.2017 | Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.

nachricht Entzündungshemmende Birkeninhaltsstoffe nachhaltig nutzen
03.07.2017 | Christian-Albrechts-Universität zu Kiel

Alle Nachrichten aus der Kategorie: Interdisziplinäre Forschung >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Navigationssystem der Hirnzellen entschlüsselt

Das menschliche Gehirn besteht aus etwa hundert Milliarden Nervenzellen. Informationen zwischen ihnen werden über ein komplexes Netzwerk aus Nervenfasern übermittelt. Verdrahtet werden die meisten dieser Verbindungen vor der Geburt nach einem genetischen Bauplan, also ohne dass äußere Einflüsse eine Rolle spielen. Mehr darüber, wie das Navigationssystem funktioniert, das die Axone beim Wachstum leitet, haben jetzt Forscher des Karlsruher Instituts für Technologie (KIT) herausgefunden. Das berichten sie im Fachmagazin eLife.

Die Gesamtlänge des Nervenfasernetzes im Gehirn beträgt etwa 500.000 Kilometer, mehr als die Entfernung zwischen Erde und Mond. Damit es beim Verdrahten der...

Im Focus: Kohlenstoff-Nanoröhrchen verwandeln Strom in leuchtende Quasiteilchen

Starke Licht-Materie-Kopplung in diesen halbleitenden Röhrchen könnte zu elektrisch gepumpten Lasern führen

Auch durch Anregung mit Strom ist die Erzeugung von leuchtenden Quasiteilchen aus Licht und Materie in halbleitenden Kohlenstoff-Nanoröhrchen möglich....

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Breitbandlichtquellen mit flüssigem Kern

Jenaer Forschern ist es gelungen breitbandiges Laserlicht im mittleren Infrarotbereich mit Hilfe von flüssigkeitsgefüllten optischen Fasern zu erzeugen. Mit den Fasern lieferten sie zudem experimentelle Beweise für eine neue Dynamik von Solitonen – zeitlich und spektral stabile Lichtwellen – die aufgrund der besonderen Eigenschaften des Flüssigkerns entsteht. Die Ergebnisse der Arbeiten publizierte das Jenaer Wissenschaftler-Team vom Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT), dem Fraunhofer-Insitut für Angewandte Optik und Feinmechanik, der Friedrich-Schiller-Universität Jena und des Helmholtz-Insituts im renommierten Fachblatt Nature Communications.

Aus einem ultraschnellen intensiven Laserpuls, den sie in die Faser einkoppeln, erzeugen die Wissenschaftler ein, für das menschliche Auge nicht sichtbares,...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

10. Uelzener Forum: Demografischer Wandel und Digitalisierung

26.07.2017 | Veranstaltungen

Clash of Realities 2017: Anmeldung jetzt möglich. Internationale Konferenz an der TH Köln

26.07.2017 | Veranstaltungen

2. Spitzentreffen »Industrie 4.0 live«

25.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Robuste Computer für's Auto

26.07.2017 | Seminare Workshops

Läuft wie am Schnürchen!

26.07.2017 | Seminare Workshops

Leicht ist manchmal ganz schön schwer!

26.07.2017 | Seminare Workshops