Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Warum fallen uns symmetrische Bewegungen besonders leicht?

01.11.2001


Münchner Max-Planck-Psychologen widerlegen zwanzig Jahre alte Lehrmeinung / Bewegungssteuerung über Wahrnehmung und nicht im motorischen System


Bei Bewegungen, die mit beiden Händen gleichzeitig ausgeführt werden, zeigt der Mensch eine starke Tendenz zu spiegelsymmetrischen Bewegungen. Diese Neigung zur Symmetrie wird meist als gemeinsame Aktivierung homologer, das heißt anatomisch spiegelbildlicher Muskeln gedeutet. Wissenschaftler vom Münchner Max-Planck-Institut für psychologische Forschung haben jetzt jedoch herausgefunden, dass die Steuerung solcher Bewegungen offenbar über die Wahrnehmung erfolgt: Äußerlich symmetrische und damit einfach wahrnehmbare Bewegungen scheinen besonders gut steuerbar, unabhängig von den beteiligten Muskeln. Danach können Menschen auch hochkomplexe, ja normalerweise "unmögliche" Bewegungen ausführen, wenn nur das von ihnen wahrnehmbare Ergebnis der Bewegung einfach ist (nature, 1. November 2001).

Menschen tendieren dazu, Bewegungen beider Hände spiegelbildlich zu synchronisieren. Unsymmetrische Bewegungen können gar unwillkürlich in symmetrische übergehen, besonders bei höheren Bewegungsgeschwindigkeiten. Wie ist diese spontane Symmetrietendenz bei bimanuellen Bewegungen zu erklären?


Die meisten Forscher favorisieren bisher die nahe liegende Idee, dass die Neigung zu symmetrischen Bewegungen mit der symmetrischen Struktur des Körpers und des Nervensystems zusammenhängt. Die Symmetrietendenz ist - so die traditionelle Lehrmeinung - eine Tendenz zur gemeinsamen Aktivierung anatomisch homologer Muskeln. Eine solche Deutung scheint auf den ersten Blick plausibel, denn homologe Muskeln, aber auch zueinander spiegelbildliche Gebiete in beiden Hirnhälften und im Rückenmark können erstens leicht gemeinsam aktiviert werden und sind zweitens über neuronale Wege miteinander verbunden, die selbst wiederum eine besonders intensive und effektive "Express-Kommunikation" ermöglichen.

Eine andere Erklärung der Symmetrietendenz liegt jedoch auf der Hand: Es könnte sein, dass sich hier keineswegs eine Tendenz zur gemeinsamen Aktivierung homologer Muskeln ausdrückt, sondern dass wir zu Bewegungen neigen, die symmetrisch aussehen und sich symmetrisch anfühlen. Da wir Spiegelsymmetrie gut erkennen und beurteilen können, sind symmetrisch gestaltete Bewegungen möglicherweise besonders leicht zu überwachen und zu steuern. Franz Mechsner, Dirk Kerzel, Günther Knoblich und Wolfgang Prinz vom Max-Planck-Institut für psychologische Forschung zeigten nun mit Hilfe einfacher Bewegungsexperimente, dass unsere Neigung zur Symmetrie in der Tat auf einer äußerlich wahrnehmbaren Symmetrie beruht, ohne Bezug auf Muskeln oder motorische neuronale Kommandos (nature, 1. November 2001).

Bewegungsmuster:

Parallele Bewegung

Symmetrische Bewegung


In einem ihrer Experimente untersuchten die Wissenschaftler die beidhändige "Fingeroszillation", das klassische Beispiel für die Symmetrietendenz (Abb. 1a,b): Eine Versuchsperson bewegt beide nebeneinander nach vorn ausgestreckte Zeigefinger gemeinsam nach links und rechts, zum Takt eines Metronoms. Oberhalb einer kritischen Frequenz wechseln die meisten Menschen unwillkürlich von diesem "parallelen" Bewegungsmodus in einen spiegelsymmetrischen Modus, bei dem sich die Zeigefinger im Takt gegeneinander bewegen. Symmetrische Fingerbewegungen dagegen bleiben stets stabil. Die Max-Planck-Wissenschaftler haben diese Versuchsanordnung auf einfache Weise noch erweitert: Die Versuchspersonen bewegten beide Zeigefinger weiterhin sowohl parallel als auch symmetrisch. Doch dabei liegt eine Hand mit der Handfläche nach unten, die andere nach oben (Abb. 1c-f): In "kongruenten" Positionen zeigen beide Handflächen nach unten oder beide nach oben. In "inkongruenten" Positionen zeigt eine Handfläche nach oben und die andere nach unten.

Handpositionen:

Kongruente Handpositionen: beide Handfläche nach oben, oder beide nach unten

Inkongruente Handpositionen: eine Handfläche nach oben und eine nach unten


Interessant für das Experiment sind die inkongruenten Handpositionen, denn hier gehen parallele Fingeroszillationen mit periodischer gemeinsamer Aktivierung homologer Muskeln einher. Wenn also tatsächlich eine Tendenz zur gemeinsamen Aktivierung homologer Muskeln besteht, sollte bei inkongruenten Handpositionen das parallele Bewegungsmuster stabiler sein als das symmetrische. Wenn aber eine Tendenz zu einer räumlich spiegelsymmetrischen Bewegungsgestalt besteht, dann sollten auch bei inkongruenten Handpositionen symmetrische Bewegungen stabiler sein als parallele - obwohl dabei nicht homologe, sondern unterschiedliche Muskeln gemeinsam aktiviert werden.

Die Versuchsergebnisse waren eindeutig: Auch bei inkongruenter Position der Hände sind spiegelsymmetrische Fingeroszillationen wesentlich stabiler als parallele. Bei höheren Bewegungsgeschwindigkeiten kommen spontane Übergänge vom parallelen in den symmetrischen Bewegungsmodus vor, niemals jedoch Übergänge in die umgekehrte Richtung.

Schlussfolgerung: Die spontane Symmetrietendenz bei der Zeigefingeroszillation ist eine Tendenz zu räumlich spiegelsymmetrischer Bewegung. Welche Muskeln dabei aktiv werden oder welche Nervensignale dabei gegeben werden, spielt offenbar keine Rolle. Weitere Experimente der Max-Planck-Wissenschaftler legen nahe, dieses Forschungsergebnis zu verallgemeinern: Die spontane Neigung zur Symmetrie bei Bewegungen beider Hände ist eine Tendenz zu räumlicher Symmetrie. Das Geschehen ist also stets bestimmt von äußerlich wahrnehmbaren Bewegungsgestalten, nicht von der motorischen Struktur des Nervensystems.
Die traditionelle Auffassung, dass die Neigung zur Symmetrie auf der Aktivierung gleichartiger Muskeln beruht, ist damit für die untersuchten Bewegungsabläufe widerlegt. Doch was ist letztlich die Erklärung für die Symmetrietendenz? Franz Mechsner und seine Kollegen nehmen an, dass Menschen Bewegungsmuster bevorzugen, die sich auf möglichst unkomplizierte Weise über Wahrnehmungen und mentale Vorstellungsbilder koordinieren, steuern und überwachen lassen.

Dieser Gedanke steht im Gegensatz zu traditionellen Theorien, denen zufolge Bewegungsabläufe in motorischen neuronalen Strukturen koordiniert werden. Diesen Theorien zufolge trainiert der Organismus in sich zusammenhängende muskuläre oder neuronale "Motorprogramme", die für die jeweilige Bewegung charakteristisch sind, und setzt sie bei Bedarf ein. Die Max-Planck-Wissenschaftler argumentieren dagegen, dass wir Bewegungen nicht mittelbar über solche motorischen Aktivierungsmuster, sondern unmittelbar mit Hilfe von Wahrnehmungen und mentalen Vorstellungen steuern.

Die Wissenschaftler konnten ihre Annahme durch ein weiteres Experiment erhärten: Versuchspersonen drehten unter einem Tisch beidhändig zwei von oben nicht sichtbare Kurbeln, mit denen sie zwei sichtbare kreisende Zeiger kontrollierten. Der linke Zeiger kreiste direkt über der linken Hand, während der rechte sich, über ein Zahnradgetriebe gesteuert, vier Drittel mal schneller bewegte als die rechte Hand. Die Versuchspersonen bekamen die Aufgabe, die sichtbaren Zeiger in spiegelsymmetrischen oder gegenläufigen Kreisen zu bewegen. In beiden Fällen müssen sie dazu ihre Hände in einem Frequenzverhältnis von 4:3 kreisen lassen. Zum einen ist das eine höchst komplexe Bewegung, die normalerweise unmöglich ist. Zum anderen lässt sich aus der Bewegung der Hände das Bewegungsmuster der Zeiger nicht erschließen. Symmetrie und Gegentakt in den Zeigern können somit über "motorische Programme", welche auf die Muskeln zielen, nicht erzeugt werden. Dennoch sind die Versuchspersonen recht gut in der Lage, die geforderten Bewegungsmuster einzustellen, indem sie nur auf die kreisenden Zeiger achten und dabei ihre Hände "vergessen".

Schlussfolgerung: Wir Menschen können um einfacher Effekte willen höchst komplizierte, ja "unmögliche" Bewegungen ausführen, sofern sie vor allem auf die angestrebten Effekte, nicht aber auf die genaue Körperbewegung achten. Dies scheint dadurch möglich zu sein, dass wir Bewegungen unmittelbar über Wahrnehmungen und Vorstellungen, nicht aber mittelbar über Koordinationsprozesse im motorischen System steuern. Die nötigen Muskeln scheinen im Dienste der angestrebten Effekte in letztlich einfacher Weise aktiviert zu werden. Ihr formal hochkomplexes Tätigkeitsmuster ergibt sich dabei gewissermaßen automatisch und von selbst, ohne dass es eigens als integriertes Ganzes organisiert werden müsste.

Originalarbeit:

  • Mechsner, Kerzel, Knoblich & Prinz: Perceptual basis of bimanual coordination, nature, 1. November 2001

Dr. Franz Mechsner | Referat für Presse- und Öffentli

Weitere Nachrichten aus der Kategorie Interdisziplinäre Forschung:

nachricht Neues Verbundprojekt erforscht die neurodegenerative Erkrankung Morbus Alzheimer
12.09.2017 | Universitätsklinikum Würzburg

nachricht Damit sich Mensch und Maschine besser verstehen
04.09.2017 | Technische Universität Chemnitz

Alle Nachrichten aus der Kategorie: Interdisziplinäre Forschung >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

Im Blut zirkulierende Biomoleküle und Zellen sind Träger diagnostischer Information, deren Analyse hochwirksame, individuelle Therapien ermöglichen. Um diese Information zu erschließen, haben Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein Mikrochip-basiertes Diagnosegerät entwickelt: Der »AnaLighter« analysiert und sortiert klinisch relevante Biomoleküle und Zellen in einer Blutprobe mit Licht. Dadurch können Frühdiagnosen beispielsweise von Tumor- sowie Herz-Kreislauf-Erkrankungen gestellt und patientenindividuelle Therapien eingeleitet werden. Experten des Fraunhofer ILT stellen diese Technologie vom 13.–16. November auf der COMPAMED 2017 in Düsseldorf vor.

Der »AnaLighter« ist ein kompaktes Diagnosegerät zum Sortieren von Zellen und Biomolekülen. Sein technologischer Kern basiert auf einem optisch schaltbaren...

Im Focus: Neue Möglichkeiten für die Immuntherapie beim Lungenkrebs entdeckt

Eine gemeinsame Studie der Universität Bern und des Inselspitals Bern zeigt, dass spezielle Bindegewebszellen, die in normalen Blutgefässen die Wände abdichten, bei Lungenkrebs nicht mehr richtig funktionieren. Zusätzlich unterdrücken sie die immunologische Bekämpfung des Tumors. Die Resultate legen nahe, dass diese Zellen ein neues Ziel für die Immuntherapie gegen Lungenkarzinome sein könnten.

Lungenkarzinome sind die häufigste Krebsform weltweit. Jährlich werden 1.8 Millionen Neudiagnosen gestellt; und 2016 starben 1.6 Millionen Menschen an der...

Im Focus: Sicheres Bezahlen ohne Datenspur

Ob als Smartphone-App für die Fahrkarte im Nahverkehr, als Geldwertkarten für das Schwimmbad oder in Form einer Bonuskarte für den Supermarkt: Für viele gehören „elektronische Geldbörsen“ längst zum Alltag. Doch vielen Kunden ist nicht klar, dass sie mit der Nutzung dieser Angebote weitestgehend auf ihre Privatsphäre verzichten. Am Karlsruher Institut für Technologie (KIT) entsteht ein sicheres und anonymes System, das gleichzeitig Alltagstauglichkeit verspricht. Es wird nun auf der Konferenz ACM CCS 2017 in den USA vorgestellt.

Es ist vor allem das fehlende Problembewusstsein, das den Informatiker Andy Rupp von der Arbeitsgruppe „Kryptographie und Sicherheit“ am KIT immer wieder...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Mobilität 4.0: Konferenz an der Jacobs University

18.10.2017 | Veranstaltungen

Smart MES 2017: die Fertigung der Zukunft

18.10.2017 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Dezember 2017

17.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

18.10.2017 | Biowissenschaften Chemie

Biokunststoffe könnten auch in Traktoren die Richtung angeben

18.10.2017 | Messenachrichten

»ILIGHTS«-Studie gestartet: Licht soll Wohlbefinden von Schichtarbeitern verbessern

18.10.2017 | Energie und Elektrotechnik