Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Warum fallen uns symmetrische Bewegungen besonders leicht?

01.11.2001


Münchner Max-Planck-Psychologen widerlegen zwanzig Jahre alte Lehrmeinung / Bewegungssteuerung über Wahrnehmung und nicht im motorischen System


Bei Bewegungen, die mit beiden Händen gleichzeitig ausgeführt werden, zeigt der Mensch eine starke Tendenz zu spiegelsymmetrischen Bewegungen. Diese Neigung zur Symmetrie wird meist als gemeinsame Aktivierung homologer, das heißt anatomisch spiegelbildlicher Muskeln gedeutet. Wissenschaftler vom Münchner Max-Planck-Institut für psychologische Forschung haben jetzt jedoch herausgefunden, dass die Steuerung solcher Bewegungen offenbar über die Wahrnehmung erfolgt: Äußerlich symmetrische und damit einfach wahrnehmbare Bewegungen scheinen besonders gut steuerbar, unabhängig von den beteiligten Muskeln. Danach können Menschen auch hochkomplexe, ja normalerweise "unmögliche" Bewegungen ausführen, wenn nur das von ihnen wahrnehmbare Ergebnis der Bewegung einfach ist (nature, 1. November 2001).

Menschen tendieren dazu, Bewegungen beider Hände spiegelbildlich zu synchronisieren. Unsymmetrische Bewegungen können gar unwillkürlich in symmetrische übergehen, besonders bei höheren Bewegungsgeschwindigkeiten. Wie ist diese spontane Symmetrietendenz bei bimanuellen Bewegungen zu erklären?


Die meisten Forscher favorisieren bisher die nahe liegende Idee, dass die Neigung zu symmetrischen Bewegungen mit der symmetrischen Struktur des Körpers und des Nervensystems zusammenhängt. Die Symmetrietendenz ist - so die traditionelle Lehrmeinung - eine Tendenz zur gemeinsamen Aktivierung anatomisch homologer Muskeln. Eine solche Deutung scheint auf den ersten Blick plausibel, denn homologe Muskeln, aber auch zueinander spiegelbildliche Gebiete in beiden Hirnhälften und im Rückenmark können erstens leicht gemeinsam aktiviert werden und sind zweitens über neuronale Wege miteinander verbunden, die selbst wiederum eine besonders intensive und effektive "Express-Kommunikation" ermöglichen.

Eine andere Erklärung der Symmetrietendenz liegt jedoch auf der Hand: Es könnte sein, dass sich hier keineswegs eine Tendenz zur gemeinsamen Aktivierung homologer Muskeln ausdrückt, sondern dass wir zu Bewegungen neigen, die symmetrisch aussehen und sich symmetrisch anfühlen. Da wir Spiegelsymmetrie gut erkennen und beurteilen können, sind symmetrisch gestaltete Bewegungen möglicherweise besonders leicht zu überwachen und zu steuern. Franz Mechsner, Dirk Kerzel, Günther Knoblich und Wolfgang Prinz vom Max-Planck-Institut für psychologische Forschung zeigten nun mit Hilfe einfacher Bewegungsexperimente, dass unsere Neigung zur Symmetrie in der Tat auf einer äußerlich wahrnehmbaren Symmetrie beruht, ohne Bezug auf Muskeln oder motorische neuronale Kommandos (nature, 1. November 2001).

Bewegungsmuster:

Parallele Bewegung

Symmetrische Bewegung


In einem ihrer Experimente untersuchten die Wissenschaftler die beidhändige "Fingeroszillation", das klassische Beispiel für die Symmetrietendenz (Abb. 1a,b): Eine Versuchsperson bewegt beide nebeneinander nach vorn ausgestreckte Zeigefinger gemeinsam nach links und rechts, zum Takt eines Metronoms. Oberhalb einer kritischen Frequenz wechseln die meisten Menschen unwillkürlich von diesem "parallelen" Bewegungsmodus in einen spiegelsymmetrischen Modus, bei dem sich die Zeigefinger im Takt gegeneinander bewegen. Symmetrische Fingerbewegungen dagegen bleiben stets stabil. Die Max-Planck-Wissenschaftler haben diese Versuchsanordnung auf einfache Weise noch erweitert: Die Versuchspersonen bewegten beide Zeigefinger weiterhin sowohl parallel als auch symmetrisch. Doch dabei liegt eine Hand mit der Handfläche nach unten, die andere nach oben (Abb. 1c-f): In "kongruenten" Positionen zeigen beide Handflächen nach unten oder beide nach oben. In "inkongruenten" Positionen zeigt eine Handfläche nach oben und die andere nach unten.

Handpositionen:

Kongruente Handpositionen: beide Handfläche nach oben, oder beide nach unten

Inkongruente Handpositionen: eine Handfläche nach oben und eine nach unten


Interessant für das Experiment sind die inkongruenten Handpositionen, denn hier gehen parallele Fingeroszillationen mit periodischer gemeinsamer Aktivierung homologer Muskeln einher. Wenn also tatsächlich eine Tendenz zur gemeinsamen Aktivierung homologer Muskeln besteht, sollte bei inkongruenten Handpositionen das parallele Bewegungsmuster stabiler sein als das symmetrische. Wenn aber eine Tendenz zu einer räumlich spiegelsymmetrischen Bewegungsgestalt besteht, dann sollten auch bei inkongruenten Handpositionen symmetrische Bewegungen stabiler sein als parallele - obwohl dabei nicht homologe, sondern unterschiedliche Muskeln gemeinsam aktiviert werden.

Die Versuchsergebnisse waren eindeutig: Auch bei inkongruenter Position der Hände sind spiegelsymmetrische Fingeroszillationen wesentlich stabiler als parallele. Bei höheren Bewegungsgeschwindigkeiten kommen spontane Übergänge vom parallelen in den symmetrischen Bewegungsmodus vor, niemals jedoch Übergänge in die umgekehrte Richtung.

Schlussfolgerung: Die spontane Symmetrietendenz bei der Zeigefingeroszillation ist eine Tendenz zu räumlich spiegelsymmetrischer Bewegung. Welche Muskeln dabei aktiv werden oder welche Nervensignale dabei gegeben werden, spielt offenbar keine Rolle. Weitere Experimente der Max-Planck-Wissenschaftler legen nahe, dieses Forschungsergebnis zu verallgemeinern: Die spontane Neigung zur Symmetrie bei Bewegungen beider Hände ist eine Tendenz zu räumlicher Symmetrie. Das Geschehen ist also stets bestimmt von äußerlich wahrnehmbaren Bewegungsgestalten, nicht von der motorischen Struktur des Nervensystems.
Die traditionelle Auffassung, dass die Neigung zur Symmetrie auf der Aktivierung gleichartiger Muskeln beruht, ist damit für die untersuchten Bewegungsabläufe widerlegt. Doch was ist letztlich die Erklärung für die Symmetrietendenz? Franz Mechsner und seine Kollegen nehmen an, dass Menschen Bewegungsmuster bevorzugen, die sich auf möglichst unkomplizierte Weise über Wahrnehmungen und mentale Vorstellungsbilder koordinieren, steuern und überwachen lassen.

Dieser Gedanke steht im Gegensatz zu traditionellen Theorien, denen zufolge Bewegungsabläufe in motorischen neuronalen Strukturen koordiniert werden. Diesen Theorien zufolge trainiert der Organismus in sich zusammenhängende muskuläre oder neuronale "Motorprogramme", die für die jeweilige Bewegung charakteristisch sind, und setzt sie bei Bedarf ein. Die Max-Planck-Wissenschaftler argumentieren dagegen, dass wir Bewegungen nicht mittelbar über solche motorischen Aktivierungsmuster, sondern unmittelbar mit Hilfe von Wahrnehmungen und mentalen Vorstellungen steuern.

Die Wissenschaftler konnten ihre Annahme durch ein weiteres Experiment erhärten: Versuchspersonen drehten unter einem Tisch beidhändig zwei von oben nicht sichtbare Kurbeln, mit denen sie zwei sichtbare kreisende Zeiger kontrollierten. Der linke Zeiger kreiste direkt über der linken Hand, während der rechte sich, über ein Zahnradgetriebe gesteuert, vier Drittel mal schneller bewegte als die rechte Hand. Die Versuchspersonen bekamen die Aufgabe, die sichtbaren Zeiger in spiegelsymmetrischen oder gegenläufigen Kreisen zu bewegen. In beiden Fällen müssen sie dazu ihre Hände in einem Frequenzverhältnis von 4:3 kreisen lassen. Zum einen ist das eine höchst komplexe Bewegung, die normalerweise unmöglich ist. Zum anderen lässt sich aus der Bewegung der Hände das Bewegungsmuster der Zeiger nicht erschließen. Symmetrie und Gegentakt in den Zeigern können somit über "motorische Programme", welche auf die Muskeln zielen, nicht erzeugt werden. Dennoch sind die Versuchspersonen recht gut in der Lage, die geforderten Bewegungsmuster einzustellen, indem sie nur auf die kreisenden Zeiger achten und dabei ihre Hände "vergessen".

Schlussfolgerung: Wir Menschen können um einfacher Effekte willen höchst komplizierte, ja "unmögliche" Bewegungen ausführen, sofern sie vor allem auf die angestrebten Effekte, nicht aber auf die genaue Körperbewegung achten. Dies scheint dadurch möglich zu sein, dass wir Bewegungen unmittelbar über Wahrnehmungen und Vorstellungen, nicht aber mittelbar über Koordinationsprozesse im motorischen System steuern. Die nötigen Muskeln scheinen im Dienste der angestrebten Effekte in letztlich einfacher Weise aktiviert zu werden. Ihr formal hochkomplexes Tätigkeitsmuster ergibt sich dabei gewissermaßen automatisch und von selbst, ohne dass es eigens als integriertes Ganzes organisiert werden müsste.

Originalarbeit:

  • Mechsner, Kerzel, Knoblich & Prinz: Perceptual basis of bimanual coordination, nature, 1. November 2001

Dr. Franz Mechsner | Referat für Presse- und Öffentli

Weitere Nachrichten aus der Kategorie Interdisziplinäre Forschung:

nachricht Neues Verbundprojekt erforscht die neurodegenerative Erkrankung Morbus Alzheimer
12.09.2017 | Universitätsklinikum Würzburg

nachricht Damit sich Mensch und Maschine besser verstehen
04.09.2017 | Technische Universität Chemnitz

Alle Nachrichten aus der Kategorie: Interdisziplinäre Forschung >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantensensoren entschlüsseln magnetische Ordnung in neuartigem Halbleitermaterial

Physiker konnte erstmals eine spiralförmige magnetische Ordnung in einem multiferroischen Material abbilden. Diese gelten als vielversprechende Kandidaten für zukünftige Datenspeicher. Der Nachweis gelang den Forschern mit selbst entwickelten Quantensensoren, die elektromagnetische Felder im Nanometerbereich analysieren können und an der Universität Basel entwickelt wurden. Die Ergebnisse von Wissenschaftlern des Departements Physik und des Swiss Nanoscience Institute der Universität Basel sowie der Universität Montpellier und Forschern der Universität Paris-Saclay wurden in der Zeitschrift «Nature» veröffentlicht.

Multiferroika sind Materialien, die gleichzeitig auf elektrische wie auch auf magnetische Felder reagieren. Die beiden Eigenschaften kommen für gewöhnlich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Autonomes Fahren wirft viele Fragen auf

20.09.2017 | Veranstaltungen

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungen

Biowissenschaftler tauschen neue Erkenntnisse über molekulare Gen-Schalter aus

19.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Neuer Ansatz: Nierenschädigungen therapieren, bevor Symptome auftreten

20.09.2017 | Medizin Gesundheit

Autonomes Fahren wirft viele Fragen auf

20.09.2017 | Veranstaltungsnachrichten

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungsnachrichten