Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Komplizierte Denkmuster im Gehirn entschlüsselt

07.02.2005


Neue Form robuster Synchronisation in komplexen Netzwerken entdeckt



Wissenschaftler des Max-Planck-Instituts für Dynamik und Selbstorganisation sind den komplizierten Denkmustern im Gehirn einen Schritt weitergekommen. Den Wissenschaftlern ist es gelungen herauszufinden, dass sich das kollektive Verhalten neuronaler Netzwerke bei einer komplizierter werdenden Struktur qualitativ stark verändern kann. Diese Erkenntnisse waren bisher nicht bekannt, berichten die Wissenschaftler im Fachmagazin Physical Review Letters.



Um einen Text verstehen oder Musik hören zu können, nutzen die Menschen neuronale Netzwerke im Gehirn. Diese bestehen aus Millionen von Nervenzellen (Neuronen), die auf komplizierte Art und Weise in Netzwerken zusammengeschaltet sind. Bisher sind die Wissenschaftler davon ausgegangen, dass die Dynamik eines neuronalen Netzwerks schnell in einen stationären Zustand, einen so genannten Attraktor, mündet. Nach den bisherigen Theorien bedeutet die Konvergenz zu einem Attraktor das Erfüllen einer Aufgabe, wie zum Beispiel das Erkennen eines Gesichts. Die Göttinger Forscher haben nun entdeckt, dass bei komplizierterer Verschaltung der Nervenzellen nicht sehr lange Transienten (das vorübergehende Netzwerk zwischen zwei Attraktoren) auftreten, sondern, dass Wahrnehmungen von lang andauernden chaotischen Transienten bestimmt wird. Die Forscher vermuten daher, das Gehirn könnte doch anders arbeiten als wir denken und die Transienten zur Verarbeitung von Informationen benutzen.

Der neuen Theorie des Forscherteams um Alexander Zumdieck, Marc Timme, Theo Geisel und Fred Wolf nach werden die Attraktoren in bestimmten Netzen komplex verknüpfter Neuronen erst nach extrem langen Transienten erreicht. Die Wissenschaftler zeigen, dass solch dramatische Veränderungen im dynamischen Verhalten schon bei kleinen Änderungen der Netzwerkstruktur auftreten. Die typische Dynamik eines solchen Netzes wird also nicht durch die Attraktoren, sondern durch die Transienten bestimmt. Von daher könnten die Attraktoren in den neuronalen Netzen weniger wichtig sein als bisher angenommen.

Die Forscher haben auch festgestellt, dass die mittlere Dauer der Transienten sehr schnell mit der Netzwerkgröße wächst. Sind beispielsweise 80 Prozent der möglichen Verknüpfungen in einem Netz hergestellt, erreicht ein Netzwerk aus nur zehn Neuronen, die zehn Mal pro Sekunde einen Puls aussenden, einen Attraktor erst nach etwa zehn Sekunden. Ein Netzwerk aus 100 Neuronen bräuchte dafür etwa zehn hoch elf Jahre. Netzwerke dieser Größe erreichen also den Attraktor praktisch nicht.

Wolfgang Weitlaner | pressetext.deutschland
Weitere Informationen:
http://www.chaos.gwdg.de

Weitere Berichte zu: Attraktor Denkmuster Nervenzelle Neuron Transient

Weitere Nachrichten aus der Kategorie Interdisziplinäre Forschung:

nachricht Neues Verbundprojekt erforscht die neurodegenerative Erkrankung Morbus Alzheimer
12.09.2017 | Universitätsklinikum Würzburg

nachricht Damit sich Mensch und Maschine besser verstehen
04.09.2017 | Technische Universität Chemnitz

Alle Nachrichten aus der Kategorie: Interdisziplinäre Forschung >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Höher - schneller - weiter: Der Faktor Mensch in der Luftfahrt

20.09.2017 | Veranstaltungen

Wälder unter Druck: Internationale Tagung zur Rolle von Wäldern in der Landschaft an der Uni Halle

20.09.2017 | Veranstaltungen

7000 Teilnehmer erwartet: 69. Urologen-Kongress startet heute in Dresden

20.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Drohnen sehen auch im Dunkeln

20.09.2017 | Informationstechnologie

Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen

20.09.2017 | Biowissenschaften Chemie

Frühwarnsystem für gefährliche Gase: TUHH-Forscher erreichen Meilenstein

20.09.2017 | Energie und Elektrotechnik