Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Komplizierte Denkmuster im Gehirn entschlüsselt

07.02.2005


Neue Form robuster Synchronisation in komplexen Netzwerken entdeckt



Wissenschaftler des Max-Planck-Instituts für Dynamik und Selbstorganisation sind den komplizierten Denkmustern im Gehirn einen Schritt weitergekommen. Den Wissenschaftlern ist es gelungen herauszufinden, dass sich das kollektive Verhalten neuronaler Netzwerke bei einer komplizierter werdenden Struktur qualitativ stark verändern kann. Diese Erkenntnisse waren bisher nicht bekannt, berichten die Wissenschaftler im Fachmagazin Physical Review Letters.



Um einen Text verstehen oder Musik hören zu können, nutzen die Menschen neuronale Netzwerke im Gehirn. Diese bestehen aus Millionen von Nervenzellen (Neuronen), die auf komplizierte Art und Weise in Netzwerken zusammengeschaltet sind. Bisher sind die Wissenschaftler davon ausgegangen, dass die Dynamik eines neuronalen Netzwerks schnell in einen stationären Zustand, einen so genannten Attraktor, mündet. Nach den bisherigen Theorien bedeutet die Konvergenz zu einem Attraktor das Erfüllen einer Aufgabe, wie zum Beispiel das Erkennen eines Gesichts. Die Göttinger Forscher haben nun entdeckt, dass bei komplizierterer Verschaltung der Nervenzellen nicht sehr lange Transienten (das vorübergehende Netzwerk zwischen zwei Attraktoren) auftreten, sondern, dass Wahrnehmungen von lang andauernden chaotischen Transienten bestimmt wird. Die Forscher vermuten daher, das Gehirn könnte doch anders arbeiten als wir denken und die Transienten zur Verarbeitung von Informationen benutzen.

Der neuen Theorie des Forscherteams um Alexander Zumdieck, Marc Timme, Theo Geisel und Fred Wolf nach werden die Attraktoren in bestimmten Netzen komplex verknüpfter Neuronen erst nach extrem langen Transienten erreicht. Die Wissenschaftler zeigen, dass solch dramatische Veränderungen im dynamischen Verhalten schon bei kleinen Änderungen der Netzwerkstruktur auftreten. Die typische Dynamik eines solchen Netzes wird also nicht durch die Attraktoren, sondern durch die Transienten bestimmt. Von daher könnten die Attraktoren in den neuronalen Netzen weniger wichtig sein als bisher angenommen.

Die Forscher haben auch festgestellt, dass die mittlere Dauer der Transienten sehr schnell mit der Netzwerkgröße wächst. Sind beispielsweise 80 Prozent der möglichen Verknüpfungen in einem Netz hergestellt, erreicht ein Netzwerk aus nur zehn Neuronen, die zehn Mal pro Sekunde einen Puls aussenden, einen Attraktor erst nach etwa zehn Sekunden. Ein Netzwerk aus 100 Neuronen bräuchte dafür etwa zehn hoch elf Jahre. Netzwerke dieser Größe erreichen also den Attraktor praktisch nicht.

Wolfgang Weitlaner | pressetext.deutschland
Weitere Informationen:
http://www.chaos.gwdg.de

Weitere Berichte zu: Attraktor Denkmuster Nervenzelle Neuron Transient

Weitere Nachrichten aus der Kategorie Interdisziplinäre Forschung:

nachricht Speiseröhrenkrebs einfacher erkennen
06.03.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Neues Labor für die Aufbautechnik von ultradünnen Mikrosystemen
21.02.2017 | Hahn-Schickard

Alle Nachrichten aus der Kategorie: Interdisziplinäre Forschung >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

Zweites Symposium 4SMARTS zeigt Potenziale aktiver, intelligenter und adaptiver Systeme

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Warum der Brennstoffzelle die Luft wegbleibt

28.03.2017 | Biowissenschaften Chemie

Chlamydien: Wie Bakterien das Ruder übernehmen

28.03.2017 | Biowissenschaften Chemie

Sterngeburt in den Winden supermassereicher Schwarzer Löcher

28.03.2017 | Physik Astronomie