Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nehmen Volleyballspieler einen Ball früher wahr als Nicht-Athleten?

28.05.2001


Studie weist schnellere Reaktionszeiten und höhere Hirnaktivität nach.


Können Volleyball-Leistungssportler ihre visuelle Aufmerksamkeit auf mehr Punkte gleichzeitig richten als Vergleichsgruppen? Diese Frage beantworten Prof. Dr. Rainer Bösel und Caterina Pesce Anzeneder von der Freien Universität Berlin in einer Studie jüngst eindeutig mit "ja". So zeigen die Autoren, dass Volleyballspieler flexibler in der Lage sind, auf Reize innerhalb aber auch außerhalb des Spielfeldes zu reagieren. In Laborversuchen mit Spitzensportlern und Nichtsportlern haben die Autoren anhand von Reaktionszeit und Hirnaktivität nachgewiesen, dass Volleyballspieler eine höhere aufmerksamkeitsbedingte Hirnaktivität und schnellere Reaktionszeiten besitzen als Nichtsportler.

Der Erfolg eines Athleten hängt vor allem von der Flexibilität der Aufmerksamkeit ab. Im Ballspiel müssen Sportler unter Zeitdruck zwischen verschiedenen Aufmerksamkeitsrichtungen wechseln: zwischen Ball, Mitspieler und Gegenspieler, Spielfeld und Spielfeldgrenzen sowie den eigenen Bewegungsabläufen. In schnellen Ballspielen wie Volleyball ist die Flexibilität der visuellen Aufmerksamkeit von großer Bedeutung. Denn die Leistungsfähigkeit des Sehsystems allein ist wegen der Schnelligkeit des Spielgeschehens und der räumlichen Verteilung der relevanten Merkmale für eine situationsangemessene Wahrnehmung nicht ausreichend. Deswegen müssen Leistungssportler ihre visuelle Wahrnehmung optimieren: Wenn der Spieler voraussehen kann, wo spielrelevante Merkmale auftreten werden, kann er seine Aufmerksamkeit "antizipativ" dahin richten. Diese vorausahnende Aufmerksamkeitsorientierung erhöht die Schnelligkeit und Genauigkeit der Informationsverarbeitung.


In ihrer Studie zur "Visuellen Aufmerksamkeitsfokussierung im Sehfeld" haben Caterina Pesce Anzeneder und Rainer Bösel vom Institut für Psychologie der FU Berlin nachgewiesen, dass Volleyballspieler auch außerhalb des Spielfelds schneller auf Reize reagieren als Nichtathleten. Die Forscher konnten im Laborversuch, bei dem die Reaktionszeit und die Hirnaktivität gemessen wurde, belegen, dass Volleyballer eine höhere aufmerksamkeitsbedingte Hirnaktivität aufweisen und schnellere Reaktionszeiten als Nichtathleten besitzen. Die Spieler haben einen ihnen eigenen Aufmerksamkeitsstil und können ihre Aufmerksamkeitsstrategien flexibler gestalten, die ihnen im Vergleich zu Nichtathleten Vorteile verschaffen. Volleyballspieler wechseln seltener die Blickrichtung, wenn sie Informationen verarbeiten müssen. Sie können den Blick auch auf Orte im Raum richten, die zwischen gleichzeitig auftretenden relevanten Informationen liegen. Das heißt, dass die Spieler zwar ihre Aufmerksamkeit auf bestimmte Punkte richten, dabei aber einen weiteren Aufmerksamkeitsfokus als Nichtathleten haben, in dem sie weitere Informationen aufnehmen können.

Nichtathleten fällt dies weitaus schwerer: Im Alltagsleben wird die visuelle Aufmerksamkeit durch Kopf und Augenbewegungen orientiert. Wenn wir beim Überkreuzen einer Straße die Ampel fokussieren, weil wir so die relevante Information (ob es grün oder rot ist) verarbeiten können, nehmen wir nicht wahr, was sich möglicherweise oberhalb der Fußgängerampel abspielt. Dafür müssten wir den Blick und den Kopf weiter nach oben richten. Ballsportler können unabhängig von der Blickrichtung ihre Aufmerksamkeit auch in andere Bereiche im Sehfeld richten. Die Nützlichkeit dieser Fähigkeit - die Aufmerksamkeit entkoppelt von der Blickrichtung "verdeckt" zu orientieren und fokussieren - ist beim Volleyball ganz offensichtlich: Wenn ein Spieler den Blick auf einen bestimmten Mitspieler oder Spielfeldbereich richtet, den Ball dann aber in eine andere Richtung spielt, kann er den Gegner täuschen und Punkte machen.

Neben der sportpraktischen Bedeutung wirken die Ergebnisse auch in der Grundlagenforschung weiter. "Durch solche Experimente können wir die kognitive Hirnfunktion besser verstehen, also wo die Flexibilität der Aufmerksamkeitsfunktion liegt, wie sie beansprucht wird und wie man sie trainieren kann. Das ist dann wiederum wichtig für bestimmte Krankheitsbilder, in denen diese Funktion fehlt oder schlecht entwickelt ist, um so mögliche Lösungsansätze zu schaffen", sagt Caterina Pesce Anzeneder.


Weitere Informationen erteilt Ihnen gern:

Caterina Pesce Anzeneder, University Institute of Motor Sciences, Piazza Lauro de Bosis 15, I-00194 Roma, Tel.: 0039 / 06 / 36095535 (dienstl.), 0039 / 0766 / 570053 (privat), E-Mail: pescec@gmx.de

Univ.-Prof. Dr. Rainer Bösel, Arbeitsbereich Biopsychologie/Kognitive Neuropsychologie der Freien Universität Berlin, Habelschwerdter Allee 45, 14195 Berlin-Dahlem, Tel.: 030 / 838-55733

Ilka Seer | idw

Weitere Berichte zu: Hirnaktivität Nichtathlet Reaktionszeit Volleyballspieler

Weitere Nachrichten aus der Kategorie Interdisziplinäre Forschung:

nachricht Lösung gegen Schwefelsäureangriff auf Abwasseranlagen
23.02.2018 | Technische Universität Graz

nachricht Forschende der Uni Kiel entwickeln extrem empfindliches Sensorsystem für Magnetfelder
15.02.2018 | Christian-Albrechts-Universität zu Kiel

Alle Nachrichten aus der Kategorie: Interdisziplinäre Forschung >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics