Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nehmen Volleyballspieler einen Ball früher wahr als Nicht-Athleten?

28.05.2001


Studie weist schnellere Reaktionszeiten und höhere Hirnaktivität nach.


Können Volleyball-Leistungssportler ihre visuelle Aufmerksamkeit auf mehr Punkte gleichzeitig richten als Vergleichsgruppen? Diese Frage beantworten Prof. Dr. Rainer Bösel und Caterina Pesce Anzeneder von der Freien Universität Berlin in einer Studie jüngst eindeutig mit "ja". So zeigen die Autoren, dass Volleyballspieler flexibler in der Lage sind, auf Reize innerhalb aber auch außerhalb des Spielfeldes zu reagieren. In Laborversuchen mit Spitzensportlern und Nichtsportlern haben die Autoren anhand von Reaktionszeit und Hirnaktivität nachgewiesen, dass Volleyballspieler eine höhere aufmerksamkeitsbedingte Hirnaktivität und schnellere Reaktionszeiten besitzen als Nichtsportler.

Der Erfolg eines Athleten hängt vor allem von der Flexibilität der Aufmerksamkeit ab. Im Ballspiel müssen Sportler unter Zeitdruck zwischen verschiedenen Aufmerksamkeitsrichtungen wechseln: zwischen Ball, Mitspieler und Gegenspieler, Spielfeld und Spielfeldgrenzen sowie den eigenen Bewegungsabläufen. In schnellen Ballspielen wie Volleyball ist die Flexibilität der visuellen Aufmerksamkeit von großer Bedeutung. Denn die Leistungsfähigkeit des Sehsystems allein ist wegen der Schnelligkeit des Spielgeschehens und der räumlichen Verteilung der relevanten Merkmale für eine situationsangemessene Wahrnehmung nicht ausreichend. Deswegen müssen Leistungssportler ihre visuelle Wahrnehmung optimieren: Wenn der Spieler voraussehen kann, wo spielrelevante Merkmale auftreten werden, kann er seine Aufmerksamkeit "antizipativ" dahin richten. Diese vorausahnende Aufmerksamkeitsorientierung erhöht die Schnelligkeit und Genauigkeit der Informationsverarbeitung.


In ihrer Studie zur "Visuellen Aufmerksamkeitsfokussierung im Sehfeld" haben Caterina Pesce Anzeneder und Rainer Bösel vom Institut für Psychologie der FU Berlin nachgewiesen, dass Volleyballspieler auch außerhalb des Spielfelds schneller auf Reize reagieren als Nichtathleten. Die Forscher konnten im Laborversuch, bei dem die Reaktionszeit und die Hirnaktivität gemessen wurde, belegen, dass Volleyballer eine höhere aufmerksamkeitsbedingte Hirnaktivität aufweisen und schnellere Reaktionszeiten als Nichtathleten besitzen. Die Spieler haben einen ihnen eigenen Aufmerksamkeitsstil und können ihre Aufmerksamkeitsstrategien flexibler gestalten, die ihnen im Vergleich zu Nichtathleten Vorteile verschaffen. Volleyballspieler wechseln seltener die Blickrichtung, wenn sie Informationen verarbeiten müssen. Sie können den Blick auch auf Orte im Raum richten, die zwischen gleichzeitig auftretenden relevanten Informationen liegen. Das heißt, dass die Spieler zwar ihre Aufmerksamkeit auf bestimmte Punkte richten, dabei aber einen weiteren Aufmerksamkeitsfokus als Nichtathleten haben, in dem sie weitere Informationen aufnehmen können.

Nichtathleten fällt dies weitaus schwerer: Im Alltagsleben wird die visuelle Aufmerksamkeit durch Kopf und Augenbewegungen orientiert. Wenn wir beim Überkreuzen einer Straße die Ampel fokussieren, weil wir so die relevante Information (ob es grün oder rot ist) verarbeiten können, nehmen wir nicht wahr, was sich möglicherweise oberhalb der Fußgängerampel abspielt. Dafür müssten wir den Blick und den Kopf weiter nach oben richten. Ballsportler können unabhängig von der Blickrichtung ihre Aufmerksamkeit auch in andere Bereiche im Sehfeld richten. Die Nützlichkeit dieser Fähigkeit - die Aufmerksamkeit entkoppelt von der Blickrichtung "verdeckt" zu orientieren und fokussieren - ist beim Volleyball ganz offensichtlich: Wenn ein Spieler den Blick auf einen bestimmten Mitspieler oder Spielfeldbereich richtet, den Ball dann aber in eine andere Richtung spielt, kann er den Gegner täuschen und Punkte machen.

Neben der sportpraktischen Bedeutung wirken die Ergebnisse auch in der Grundlagenforschung weiter. "Durch solche Experimente können wir die kognitive Hirnfunktion besser verstehen, also wo die Flexibilität der Aufmerksamkeitsfunktion liegt, wie sie beansprucht wird und wie man sie trainieren kann. Das ist dann wiederum wichtig für bestimmte Krankheitsbilder, in denen diese Funktion fehlt oder schlecht entwickelt ist, um so mögliche Lösungsansätze zu schaffen", sagt Caterina Pesce Anzeneder.


Weitere Informationen erteilt Ihnen gern:

Caterina Pesce Anzeneder, University Institute of Motor Sciences, Piazza Lauro de Bosis 15, I-00194 Roma, Tel.: 0039 / 06 / 36095535 (dienstl.), 0039 / 0766 / 570053 (privat), E-Mail: pescec@gmx.de

Univ.-Prof. Dr. Rainer Bösel, Arbeitsbereich Biopsychologie/Kognitive Neuropsychologie der Freien Universität Berlin, Habelschwerdter Allee 45, 14195 Berlin-Dahlem, Tel.: 030 / 838-55733

Ilka Seer | idw

Weitere Berichte zu: Hirnaktivität Nichtathlet Reaktionszeit Volleyballspieler

Weitere Nachrichten aus der Kategorie Interdisziplinäre Forschung:

nachricht Zelluläres Kräftemessen
29.09.2016 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

nachricht Laser-beschleunigte Protonen zur Krebstherapie
13.09.2016 | Heinrich-Heine-Universität Düsseldorf

Alle Nachrichten aus der Kategorie: Interdisziplinäre Forschung >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Experimentalphysik - Protonenstrahlung nach explosiver Vorarbeit

LMU-Physiker haben mit Nanopartikeln und Laserlicht Protonenstrahlung produziert. Sie könnte künftig neue Wege in der Strahlungsmedizin eröffnen und bei der Tumorbekämpfung helfen.

Stark gebündeltes Licht entwickelt eine enorme Kraft. Ein Team um Professor Jörg Schreiber vom Lehrstuhl für Experimentalphysik - Medizinische Physik der LMU...

Im Focus: Der perfekte Sonnensturm

Ein geomagnetischer Sturm hat sich als Glücksfall für die Wissenschaft erwiesen. Jahrzehnte rätselte die Forschung, wie hoch energetische Partikel, die auf die Magnetosphäre der Erde treffen, wieder verschwinden. Jetzt hat Yuri Shprits vom Deutschen GeoForschungsZentrum GFZ und der Universität Potsdam mit einem internationalen Team eine Erklärung gefunden: Entscheidend für den Verlust an Teilchen ist, wie schnell die Partikel sind. Shprits: „Das hilft uns auch, Prozesse auf der Sonne, auf anderen Planeten und sogar in fernen Galaxien zu verstehen.“ Er fügt hinzu: „Die Studie wird uns überdies helfen, das ‚Weltraumwetter‘ besser vorherzusagen und damit wertvolle Satelliten zu schützen.“

Ein geomagnetischer Sturm am 17. Januar 2013 hat sich als Glücksfall für die Wissenschaft erwiesen. Der Sonnensturm ermöglichte einzigartige Beobachtungen, die...

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: Neuer Schalter entscheidet zwischen Reparatur und Zelltod

Eine der wichtigsten Entscheidungen, die eine Zelle zu treffen hat, ist eine Frage von Leben und Tod: kann ein Schaden repariert werden oder ist es sinnvoller zellulären Selbstmord zu begehen um weitere Schädigung zu verhindern? In einer Kaskade eines bisher wenig verstandenen Signalweges konnten Forscher des Exzellenzclusters für Alternsforschung CECAD an der Universität zu Köln ein Protein identifizieren (UFD-2), das eine Schlüsselrolle in dem Prozess einnimmt. Die Ergebnisse wurden in der Fachzeitschrift Nature Structural & Molecular Biology veröffentlicht.

Die genetische Information einer jeden Zelle liegt in ihrer Sequenz der DNA-Doppelhelix. Doppelstrangbrüche der DNA, die durch Strahlung hervorgerufen werden...

Im Focus: Forscher entwickeln quantenphotonischen Schaltkreis mit elektrischer Lichtquelle

Optische Quantenrechner könnten die Computertechnologie revolutionieren. Forschern um Wolfram Pernice von der Westfälischen Wilhelms-Universität Münster sowie Ralph Krupke, Manfred Kappes und Carsten Rockstuhl vom Karlsruher Institut für Technologie ist es nun gelungen, einen quantenoptischen Versuchsaufbau auf einem Chip zu platzieren. Damit haben sie eine Voraussetzung erfüllt, um photonische Schaltkreise für optische Quantencomputer nutzbar machen zu können.

Ob für eine abhörsichere Datenverschlüsselung, die ultraschnelle Berechnung riesiger Datenmengen oder die sogenannte Quantensimulation, mit der hochkomplexe...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Das Heidelberg Laureate Forum: Eine Veranstaltung mit Zukunft

29.09.2016 | Veranstaltungen

Wissenschaftsjahr Meere und Ozeane - Oktober 2016

29.09.2016 | Veranstaltungen

EEHE 2017 – Strom statt Benzin. Experten diskutieren die Umsetzung neuester Fahrzeugkonzepte. Call vor Papers endet am 31.10.2016!

28.09.2016 | Veranstaltungen

 
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Schwerste Atome im Rampenlicht

29.09.2016 | Physik Astronomie

Zelluläres Kräftemessen

29.09.2016 | Interdisziplinäre Forschung

K 2016: Von OLED-Verkapselung bis Plagiatschutz

29.09.2016 | Messenachrichten