Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Farbensehen am Rand des Gesichtsfelds

04.05.2001


Wissenschaftler aus Göttingen, Sydney und New York

haben herausgefunden, wie Farbreize im äußeren Gesichtsfeldbereich verarbeitet werden. Während die meisten Menschen Farben bei direktem Hinsehen gut unterscheiden können, nimmt die Farbwahrnehmung zur
Peripherie des Auges hin deutlich ab. Liegt das an einer ungenauen Verschaltung der Farbrezeptoren in der Netzhaut des Auges oder an der weiteren Verarbeitung von Farbsignalen im Gehirn? Das war lange eine offene Frage. Ein Team um Prof. Dr. Barry Lee am Max-Planck-Institut für biophysikalische Chemie in Göttingen hat nun nachgewiesen, dass auch in Randbereichen des Gesichtsfelds die Nervenzellen im Auge noch farbspezifisch reagieren. Der Verlust der Farbwahrnehmung im äußeren Gesichtsfeld muss also im Gehirn passieren. (Martin, Lee, White, Solomon, & Rüttiger, Nature 410, 933-936 (2001) )

Das menschliche Sehsystem enthält zwei unterschiedliche, jeweils kontrastierende Farbkanäle (rot-grün und blau-gelb), in denen unsere gesamte Farbwahrnehmung repräsentiert ist. Das blau-gelbe System ist bei den Säugetieren entwicklungsgeschichtlich alt, das rot-grüne System kommt dagegen nur bei Affen und Menschen vor - andere Säugetiere sind rot-grün-farbenblind. Die Farbkanäle kommen durch die drei Gruppen von Photorezeptoren zustande, die nur bei Tageslicht reagieren (sogenannte "Zäpfchen") und vorwiegend Licht kurzer Wellenlänge (S, blau), mittel- (M, grün-gelb) oder langwelliges Licht (L, rot) absorbieren; andere Säugetiere als Affen und Menschen besitzen nur M-Rezeptoren. Durch Kombination dieser Signale entstehen die beiden Farbkanäle: +S-(M+L) ergibt den blau-gelben Farbkanal, +M-L (und +L-M) den rot-grünen. Diese Verrechnung erfolgt schon bald hinter den Rezeptoren, noch in der Augennetzhaut (Retina).

Die anatomischen Grundlagen dieser Verschaltung sind für den blau-gelben Farbkanal verstanden, aber die Grundlage des Rot-Grün-Kanals ist noch unsicher. Man weiß, dass das verantwortliche Zellsystem in der Augennetzhaut die sogenannten "midget cells" (Zwergzellen) sind. Im zentralen Gesichtsfeld ist ein einzelner M- oder L-Rezeptor auf eine einzelne bipolare Zelle des "midget cell"-Systems verschaltet, und dann weiter auf eine einzelne Ganglionzelle, die ihre Signale zum Gehirn sendet. Entweder reicht diese spezifische Verschaltung aus, dass Rot-Grün-Farbsignale die Hirnrinde erreichen, oder es muss weitere Verschaltungsmechanismen im Auge geben, die das rot-grüne Farbsignal spezifisch herausfiltern. Nach solchen Mechanismen hat man anatomisch gesucht, sie aber nicht gefunden.

Ein kritischer Test, um diese beiden Hypothesen zur unterscheiden, ist das Farbensehen in Randbereichen der Retina, in Gesichtsfeldbereichen 20-30º von der Mitte entfernt. Hier sieht es so aus, als ob die spezifische Verbindung des "midget cell"-Systems zusammengebrochen ist; jede Ganglionzelle hat Kontakt mit etwa 20-30 verschiedenen Rezeptoren. Ohne die spezifische Verbindung einzelner Rezeptorentypen auf dieselbe Zelle sollten diese peripheren Zellen daher nicht rot-grün farbempfindlich sein. Bei Affen und Menschen ist die Farbempfindlichkeit im äußeren Gesichtsfeldbereich tatsächlich deutlich verringert, und man hat dies eben darauf zurückgeführt, dass die zelluläre Grundlage für eine Rot-Grün-Unterscheidung bereits auf retinaler Ebene verloren gegangen ist. Nur durch spezifische Verschaltungsmechanismen könnten diese Zellen ihre Rot-Grün-Empfindlichkeit beibehalten.

In einer Zusammenarbeit zwischen dem Max-Planck-Institut für biophysikalische Chemie in Göttingen, der Universität in Sydney, Australien, und dem State College für Optometrie in New York haben Wissenschaftler jetzt mit quantitativen Methoden die Rot-Grün-Farbempfindlichkeit von Ganglionzellen in Randbereichen der Augennetzhaut untersucht. Die Ergebnisse waren eindeutig: die Eigenschaften von peripheren Rot-Grün-Zellen waren denen von zentralen Rot-Grün-Zellen sehr ähnlich. Der Verlust der Farbempfindlichkeit im peripheren Gesichtsfeld muss also cortikalen Ursprung haben, d.h. durch die weitere Verarbeitung im Gehirn zustande kommen.

Der jetzt in Nature veröffentlichte Befund wirft die Frage auf, wie diese Zellen in der Retina anatomisch verschaltet sind. Die Dendritenbäume peripherer Zwerg-Ganglionzellen haben oft sehr unregelmäßige Form; in Modellrechnungen konnten die Autoren zeigen, dass diese Unregelmäßigkeiten einer spezifischen Auswahl von ausschließlich M- oder L-Rezeptoren entsprechen könnten - bisher dachte man, dass die verschiedenen Rezeptoren zufällig auf eine Ganglionzelle konvergieren. Zwei Mechanismen sind denkbar, wie sich solche spezifischen Verbindungen entwickeln könnten: entweder durch so genanntes Hebbsches Lernen während der frühen Entwicklung des visuellen Systems, z.B. wenn Säuglinge Farbreize sehen, oder durch biochemische Marker, die helfen, spezifische Verbindungen aufzubauen. Die letztere Möglichkeit erscheint zwar plausibler, aber die Gensequenzen der M- und L-Rezeptoren unterscheiden sich nur in wenigen Aminosäuren, so dass es schwer vorstellbar ist, wie ein solcher Marker generiert werden könnte. Dies herauszufinden ist eine Herausforderung für die weiteren Untersuchungen.

Abbildung: Die Dendritenbäume von Ganglienzellen in der Augennetzhaut sind gewöhnlich rund und empfangen Signale von allen Rezeptoren in ihrem Einzugsgebiet. Zur Peripherie hin sind die Dendritenbäume von "midget cells" aber oft unregelmäßig; das Bild zeigt eine Zelle mit einem extrem unregelmäßigen Dendritenbaum. Das anatomische Bild wurde einer (absichtlich verschwommenen) Abbildung der Rezeptorenverteilung überlagert; die blauen Felder markieren S-Rezeptoren (die regelmäßig angeordnet sind), die roten und grünen Felder entsprechen den Orten von L- und M-Rezeptoren (mit unregelmäßiger Anordnung). Die Form des Dendritenbaumes legt nahe, dass nur Bipolarzellen kontaktiert werden, die mit einem bestimmten Rezeptortyp verbunden sind, hier L-Rezeptoren. Modellrechnungen auf der Basis anatomisch beobachteter, unregelmäßiger Verteilungen bestätigen diese Vermutung. (Reprinted by permission from Nature (410:933-936) copyright (2001) Macmillan Magazines Ltd.)

Verantwortlich für diese Presseinformation:

Dr. Christoph Nothdurft
Max-Planck-Institut für biophysikalische Chemie
Presse- und Öffentlichkeitsarbeit
37070 Göttingen
Tel.: 05 51 / 2 01 - 16 41
Fax: 05 51 / 2 01 - 11 51
E-Mail: hnothdu@gwdg.de

Weitere Informationen erhalten Sie von: Prof. Dr. Barry B. Lee
Max-Planck-Institut für biophysikalische Chemie
AG Primatennetzhaut und Farbensehen
37070 Göttingen
derzeit erreichbar unter:
SUNY, State College of Optometry
33 West 42nd St
New York, NY 10036-8003
Tel.: +1 - 21 27 80 - 51 49
E-Mail: blee@sunyopt.edu

Pressedienst |

Weitere Nachrichten aus der Kategorie Interdisziplinäre Forschung:

nachricht Laser-beschleunigte Protonen zur Krebstherapie
13.09.2016 | Heinrich-Heine-Universität Düsseldorf

nachricht Menschen können einzelnes Photon sehen
20.07.2016 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

Alle Nachrichten aus der Kategorie: Interdisziplinäre Forschung >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantenboost für künstliche Intelligenz

Intelligente Maschinen, die selbständig lernen, gelten als Zukunftstrend. Forscher der Universität Innsbruck und des Joint Quantum Institute in Maryland, USA, loten nun in der Fachzeitschrift Physical Review Letters aus, wie Quantentechnologien dabei helfen können, die Methoden des maschinellen Lernens weiter zu verbessern.

In selbstfahrenden Autos, IBM's Watson oder Google's AlphaGo sind Computerprogramme am Werk, die aus Erfahrungen lernen können. Solche Maschinen werden im Zuge...

Im Focus: Synthese-chemischer Meilenstein: Neues Ferrocenium-Molekül entdeckt

Wissenschaftler der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) haben zusammen mit Kollegen der Freien Universität Berlin ein neues Molekül entdeckt: Die Eisenverbindung in der seltenen Oxidationsstufe +4 gehört zu den Ferrocenen und ist äußerst schwierig zu synthetisieren.

Metallocene werden umgangssprachlich auch als Sandwichverbindungen bezeichnet. Sie bestehen aus zwei organischen ringförmigen Verbindungen, den...

Im Focus: Neue Entwicklungen in der Asphären-Messtechnik

Kompetenzzentrum Ultrapräzise Oberflächenbearbeitung (CC UPOB) lädt zum Expertentreffen im März 2017 ein

Ob in Weltraumteleskopen, deren Optiken trotz großer Abmessungen nanometergenau gefertigt sein müssen, in Handykameras oder in Endoskopen − Asphären kommen in...

Im Focus: Mit OLED Mikrodisplays in Datenbrillen zur verbesserten Mensch-Maschine-Interaktion

Das Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP arbeitet seit Jahren an verschiedenen Entwicklungen zu OLED-Mikrodisplays, die auf organischen Halbleitern basieren. Durch die Integration einer Bildsensorfunktion direkt im Mikrodisplay, lässt sich u.a. die Augenbewegung in Datenbrillen aufnehmen und zur Steuerung von Display-Inhalten nutzen. Das verbesserte Konzept wird erstmals auf der Augmented World Expo Europe (AWE), vom 18. – 19. Oktober 2016, in Berlin, Stand B25 vorgestellt.

„Augmented Reality“ (erweiterte Realität) und „Wearable Displays“ (tragbare Displays) sind Schlagworte, denen man mittlerweile fast täglich begegnet. Beide...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von der Probe zum digitalen Modell - MikroskopieTrends ´16

26.09.2016 | Veranstaltungen

300 Experten diskutieren auf größter Entrepreneurship-Konferenz im deutschsprachigen Raum

26.09.2016 | Veranstaltungen

Idealer Ablauf für GMP-konforme Projekte

26.09.2016 | Veranstaltungen

 
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Phänotyp auf Knopfdruck

26.09.2016 | Biowissenschaften Chemie

Effiziente elektrische Antriebe: TU Graz startet Christian Doppler Labor

26.09.2016 | Maschinenbau

Methodenentwicklung an BESSY II: Automatische Auswertung beschleunigt die Suche nach neuen Wirkstoffen

26.09.2016 | Biowissenschaften Chemie