Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Farbensehen am Rand des Gesichtsfelds

04.05.2001


Wissenschaftler aus Göttingen, Sydney und New York

haben herausgefunden, wie Farbreize im äußeren Gesichtsfeldbereich verarbeitet werden. Während die meisten Menschen Farben bei direktem Hinsehen gut unterscheiden können, nimmt die Farbwahrnehmung zur
Peripherie des Auges hin deutlich ab. Liegt das an einer ungenauen Verschaltung der Farbrezeptoren in der Netzhaut des Auges oder an der weiteren Verarbeitung von Farbsignalen im Gehirn? Das war lange eine offene Frage. Ein Team um Prof. Dr. Barry Lee am Max-Planck-Institut für biophysikalische Chemie in Göttingen hat nun nachgewiesen, dass auch in Randbereichen des Gesichtsfelds die Nervenzellen im Auge noch farbspezifisch reagieren. Der Verlust der Farbwahrnehmung im äußeren Gesichtsfeld muss also im Gehirn passieren. (Martin, Lee, White, Solomon, & Rüttiger, Nature 410, 933-936 (2001) )

Das menschliche Sehsystem enthält zwei unterschiedliche, jeweils kontrastierende Farbkanäle (rot-grün und blau-gelb), in denen unsere gesamte Farbwahrnehmung repräsentiert ist. Das blau-gelbe System ist bei den Säugetieren entwicklungsgeschichtlich alt, das rot-grüne System kommt dagegen nur bei Affen und Menschen vor - andere Säugetiere sind rot-grün-farbenblind. Die Farbkanäle kommen durch die drei Gruppen von Photorezeptoren zustande, die nur bei Tageslicht reagieren (sogenannte "Zäpfchen") und vorwiegend Licht kurzer Wellenlänge (S, blau), mittel- (M, grün-gelb) oder langwelliges Licht (L, rot) absorbieren; andere Säugetiere als Affen und Menschen besitzen nur M-Rezeptoren. Durch Kombination dieser Signale entstehen die beiden Farbkanäle: +S-(M+L) ergibt den blau-gelben Farbkanal, +M-L (und +L-M) den rot-grünen. Diese Verrechnung erfolgt schon bald hinter den Rezeptoren, noch in der Augennetzhaut (Retina).

Die anatomischen Grundlagen dieser Verschaltung sind für den blau-gelben Farbkanal verstanden, aber die Grundlage des Rot-Grün-Kanals ist noch unsicher. Man weiß, dass das verantwortliche Zellsystem in der Augennetzhaut die sogenannten "midget cells" (Zwergzellen) sind. Im zentralen Gesichtsfeld ist ein einzelner M- oder L-Rezeptor auf eine einzelne bipolare Zelle des "midget cell"-Systems verschaltet, und dann weiter auf eine einzelne Ganglionzelle, die ihre Signale zum Gehirn sendet. Entweder reicht diese spezifische Verschaltung aus, dass Rot-Grün-Farbsignale die Hirnrinde erreichen, oder es muss weitere Verschaltungsmechanismen im Auge geben, die das rot-grüne Farbsignal spezifisch herausfiltern. Nach solchen Mechanismen hat man anatomisch gesucht, sie aber nicht gefunden.

Ein kritischer Test, um diese beiden Hypothesen zur unterscheiden, ist das Farbensehen in Randbereichen der Retina, in Gesichtsfeldbereichen 20-30º von der Mitte entfernt. Hier sieht es so aus, als ob die spezifische Verbindung des "midget cell"-Systems zusammengebrochen ist; jede Ganglionzelle hat Kontakt mit etwa 20-30 verschiedenen Rezeptoren. Ohne die spezifische Verbindung einzelner Rezeptorentypen auf dieselbe Zelle sollten diese peripheren Zellen daher nicht rot-grün farbempfindlich sein. Bei Affen und Menschen ist die Farbempfindlichkeit im äußeren Gesichtsfeldbereich tatsächlich deutlich verringert, und man hat dies eben darauf zurückgeführt, dass die zelluläre Grundlage für eine Rot-Grün-Unterscheidung bereits auf retinaler Ebene verloren gegangen ist. Nur durch spezifische Verschaltungsmechanismen könnten diese Zellen ihre Rot-Grün-Empfindlichkeit beibehalten.

In einer Zusammenarbeit zwischen dem Max-Planck-Institut für biophysikalische Chemie in Göttingen, der Universität in Sydney, Australien, und dem State College für Optometrie in New York haben Wissenschaftler jetzt mit quantitativen Methoden die Rot-Grün-Farbempfindlichkeit von Ganglionzellen in Randbereichen der Augennetzhaut untersucht. Die Ergebnisse waren eindeutig: die Eigenschaften von peripheren Rot-Grün-Zellen waren denen von zentralen Rot-Grün-Zellen sehr ähnlich. Der Verlust der Farbempfindlichkeit im peripheren Gesichtsfeld muss also cortikalen Ursprung haben, d.h. durch die weitere Verarbeitung im Gehirn zustande kommen.

Der jetzt in Nature veröffentlichte Befund wirft die Frage auf, wie diese Zellen in der Retina anatomisch verschaltet sind. Die Dendritenbäume peripherer Zwerg-Ganglionzellen haben oft sehr unregelmäßige Form; in Modellrechnungen konnten die Autoren zeigen, dass diese Unregelmäßigkeiten einer spezifischen Auswahl von ausschließlich M- oder L-Rezeptoren entsprechen könnten - bisher dachte man, dass die verschiedenen Rezeptoren zufällig auf eine Ganglionzelle konvergieren. Zwei Mechanismen sind denkbar, wie sich solche spezifischen Verbindungen entwickeln könnten: entweder durch so genanntes Hebbsches Lernen während der frühen Entwicklung des visuellen Systems, z.B. wenn Säuglinge Farbreize sehen, oder durch biochemische Marker, die helfen, spezifische Verbindungen aufzubauen. Die letztere Möglichkeit erscheint zwar plausibler, aber die Gensequenzen der M- und L-Rezeptoren unterscheiden sich nur in wenigen Aminosäuren, so dass es schwer vorstellbar ist, wie ein solcher Marker generiert werden könnte. Dies herauszufinden ist eine Herausforderung für die weiteren Untersuchungen.

Abbildung: Die Dendritenbäume von Ganglienzellen in der Augennetzhaut sind gewöhnlich rund und empfangen Signale von allen Rezeptoren in ihrem Einzugsgebiet. Zur Peripherie hin sind die Dendritenbäume von "midget cells" aber oft unregelmäßig; das Bild zeigt eine Zelle mit einem extrem unregelmäßigen Dendritenbaum. Das anatomische Bild wurde einer (absichtlich verschwommenen) Abbildung der Rezeptorenverteilung überlagert; die blauen Felder markieren S-Rezeptoren (die regelmäßig angeordnet sind), die roten und grünen Felder entsprechen den Orten von L- und M-Rezeptoren (mit unregelmäßiger Anordnung). Die Form des Dendritenbaumes legt nahe, dass nur Bipolarzellen kontaktiert werden, die mit einem bestimmten Rezeptortyp verbunden sind, hier L-Rezeptoren. Modellrechnungen auf der Basis anatomisch beobachteter, unregelmäßiger Verteilungen bestätigen diese Vermutung. (Reprinted by permission from Nature (410:933-936) copyright (2001) Macmillan Magazines Ltd.)

Verantwortlich für diese Presseinformation:

Dr. Christoph Nothdurft
Max-Planck-Institut für biophysikalische Chemie
Presse- und Öffentlichkeitsarbeit
37070 Göttingen
Tel.: 05 51 / 2 01 - 16 41
Fax: 05 51 / 2 01 - 11 51
E-Mail: hnothdu@gwdg.de

Weitere Informationen erhalten Sie von: Prof. Dr. Barry B. Lee
Max-Planck-Institut für biophysikalische Chemie
AG Primatennetzhaut und Farbensehen
37070 Göttingen
derzeit erreichbar unter:
SUNY, State College of Optometry
33 West 42nd St
New York, NY 10036-8003
Tel.: +1 - 21 27 80 - 51 49
E-Mail: blee@sunyopt.edu

Pressedienst |

Weitere Nachrichten aus der Kategorie Interdisziplinäre Forschung:

nachricht Multidisziplinäre Studie regt neue Strategie zur Medikamentenentwicklung an
15.01.2018 | Heidelberger Institut für Theoretische Studien gGmbH

nachricht Interaktionen zwischen einfachen molekularen Mechanismen führen zu komplexen Infektionsdynamiken
09.01.2018 | Institute of Science and Technology Austria

Alle Nachrichten aus der Kategorie: Interdisziplinäre Forschung >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vollmond-Dreierlei am 31. Januar 2018

Am 31. Januar 2018 fallen zum ersten Mal seit dem 30. Dezember 1982 "Supermond" (ein Vollmond in Erdnähe), "Blutmond" (eine totale Mondfinsternis) und "Blue Moon" (ein zweiter Vollmond im Kalendermonat) zusammen - Beobachter im deutschen Sprachraum verpassen allerdings die sichtbaren Phasen der Mondfinsternis.

Nach den letzten drei Vollmonden am 4. November 2017, 3. Dezember 2017 und 2. Januar 2018 ist auch der bevorstehende Vollmond am 31. Januar 2018 ein...

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Fliegen wird smarter – Kommunikationssystem LYRA im Lufthansa FlyingLab

• Prototypen-Test im Lufthansa FlyingLab
• LYRA Connect ist eine von drei ausgewählten Innovationen
• Bessere Kommunikation zwischen Kabinencrew und Passagieren

Die Zukunft des Fliegens beginnt jetzt: Mehrere Monate haben die Finalisten des Mode- und Technologiewettbewerbs „Telekom Fashion Fusion & Lufthansa FlyingLab“...

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

15. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

22.01.2018 | Veranstaltungen

Transferkonferenz Digitalisierung und Innovation

22.01.2018 | Veranstaltungen

Kongress Meditation und Wissenschaft

19.01.2018 | Veranstaltungen

 
VideoLinks Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
Weitere B2B-VideoLinks
Aktuelle Beiträge

15. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

22.01.2018 | Veranstaltungsnachrichten

Forschungsteam schafft neue Möglichkeiten für Medizin und Materialwissenschaft

22.01.2018 | Biowissenschaften Chemie

Ein Haus mit zwei Gesichtern

22.01.2018 | Architektur Bauwesen