Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Farbensehen am Rand des Gesichtsfelds

04.05.2001


Wissenschaftler aus Göttingen, Sydney und New York

haben herausgefunden, wie Farbreize im äußeren Gesichtsfeldbereich verarbeitet werden. Während die meisten Menschen Farben bei direktem Hinsehen gut unterscheiden können, nimmt die Farbwahrnehmung zur
Peripherie des Auges hin deutlich ab. Liegt das an einer ungenauen Verschaltung der Farbrezeptoren in der Netzhaut des Auges oder an der weiteren Verarbeitung von Farbsignalen im Gehirn? Das war lange eine offene Frage. Ein Team um Prof. Dr. Barry Lee am Max-Planck-Institut für biophysikalische Chemie in Göttingen hat nun nachgewiesen, dass auch in Randbereichen des Gesichtsfelds die Nervenzellen im Auge noch farbspezifisch reagieren. Der Verlust der Farbwahrnehmung im äußeren Gesichtsfeld muss also im Gehirn passieren. (Martin, Lee, White, Solomon, & Rüttiger, Nature 410, 933-936 (2001) )

Das menschliche Sehsystem enthält zwei unterschiedliche, jeweils kontrastierende Farbkanäle (rot-grün und blau-gelb), in denen unsere gesamte Farbwahrnehmung repräsentiert ist. Das blau-gelbe System ist bei den Säugetieren entwicklungsgeschichtlich alt, das rot-grüne System kommt dagegen nur bei Affen und Menschen vor - andere Säugetiere sind rot-grün-farbenblind. Die Farbkanäle kommen durch die drei Gruppen von Photorezeptoren zustande, die nur bei Tageslicht reagieren (sogenannte "Zäpfchen") und vorwiegend Licht kurzer Wellenlänge (S, blau), mittel- (M, grün-gelb) oder langwelliges Licht (L, rot) absorbieren; andere Säugetiere als Affen und Menschen besitzen nur M-Rezeptoren. Durch Kombination dieser Signale entstehen die beiden Farbkanäle: +S-(M+L) ergibt den blau-gelben Farbkanal, +M-L (und +L-M) den rot-grünen. Diese Verrechnung erfolgt schon bald hinter den Rezeptoren, noch in der Augennetzhaut (Retina).

Die anatomischen Grundlagen dieser Verschaltung sind für den blau-gelben Farbkanal verstanden, aber die Grundlage des Rot-Grün-Kanals ist noch unsicher. Man weiß, dass das verantwortliche Zellsystem in der Augennetzhaut die sogenannten "midget cells" (Zwergzellen) sind. Im zentralen Gesichtsfeld ist ein einzelner M- oder L-Rezeptor auf eine einzelne bipolare Zelle des "midget cell"-Systems verschaltet, und dann weiter auf eine einzelne Ganglionzelle, die ihre Signale zum Gehirn sendet. Entweder reicht diese spezifische Verschaltung aus, dass Rot-Grün-Farbsignale die Hirnrinde erreichen, oder es muss weitere Verschaltungsmechanismen im Auge geben, die das rot-grüne Farbsignal spezifisch herausfiltern. Nach solchen Mechanismen hat man anatomisch gesucht, sie aber nicht gefunden.

Ein kritischer Test, um diese beiden Hypothesen zur unterscheiden, ist das Farbensehen in Randbereichen der Retina, in Gesichtsfeldbereichen 20-30º von der Mitte entfernt. Hier sieht es so aus, als ob die spezifische Verbindung des "midget cell"-Systems zusammengebrochen ist; jede Ganglionzelle hat Kontakt mit etwa 20-30 verschiedenen Rezeptoren. Ohne die spezifische Verbindung einzelner Rezeptorentypen auf dieselbe Zelle sollten diese peripheren Zellen daher nicht rot-grün farbempfindlich sein. Bei Affen und Menschen ist die Farbempfindlichkeit im äußeren Gesichtsfeldbereich tatsächlich deutlich verringert, und man hat dies eben darauf zurückgeführt, dass die zelluläre Grundlage für eine Rot-Grün-Unterscheidung bereits auf retinaler Ebene verloren gegangen ist. Nur durch spezifische Verschaltungsmechanismen könnten diese Zellen ihre Rot-Grün-Empfindlichkeit beibehalten.

In einer Zusammenarbeit zwischen dem Max-Planck-Institut für biophysikalische Chemie in Göttingen, der Universität in Sydney, Australien, und dem State College für Optometrie in New York haben Wissenschaftler jetzt mit quantitativen Methoden die Rot-Grün-Farbempfindlichkeit von Ganglionzellen in Randbereichen der Augennetzhaut untersucht. Die Ergebnisse waren eindeutig: die Eigenschaften von peripheren Rot-Grün-Zellen waren denen von zentralen Rot-Grün-Zellen sehr ähnlich. Der Verlust der Farbempfindlichkeit im peripheren Gesichtsfeld muss also cortikalen Ursprung haben, d.h. durch die weitere Verarbeitung im Gehirn zustande kommen.

Der jetzt in Nature veröffentlichte Befund wirft die Frage auf, wie diese Zellen in der Retina anatomisch verschaltet sind. Die Dendritenbäume peripherer Zwerg-Ganglionzellen haben oft sehr unregelmäßige Form; in Modellrechnungen konnten die Autoren zeigen, dass diese Unregelmäßigkeiten einer spezifischen Auswahl von ausschließlich M- oder L-Rezeptoren entsprechen könnten - bisher dachte man, dass die verschiedenen Rezeptoren zufällig auf eine Ganglionzelle konvergieren. Zwei Mechanismen sind denkbar, wie sich solche spezifischen Verbindungen entwickeln könnten: entweder durch so genanntes Hebbsches Lernen während der frühen Entwicklung des visuellen Systems, z.B. wenn Säuglinge Farbreize sehen, oder durch biochemische Marker, die helfen, spezifische Verbindungen aufzubauen. Die letztere Möglichkeit erscheint zwar plausibler, aber die Gensequenzen der M- und L-Rezeptoren unterscheiden sich nur in wenigen Aminosäuren, so dass es schwer vorstellbar ist, wie ein solcher Marker generiert werden könnte. Dies herauszufinden ist eine Herausforderung für die weiteren Untersuchungen.

Abbildung: Die Dendritenbäume von Ganglienzellen in der Augennetzhaut sind gewöhnlich rund und empfangen Signale von allen Rezeptoren in ihrem Einzugsgebiet. Zur Peripherie hin sind die Dendritenbäume von "midget cells" aber oft unregelmäßig; das Bild zeigt eine Zelle mit einem extrem unregelmäßigen Dendritenbaum. Das anatomische Bild wurde einer (absichtlich verschwommenen) Abbildung der Rezeptorenverteilung überlagert; die blauen Felder markieren S-Rezeptoren (die regelmäßig angeordnet sind), die roten und grünen Felder entsprechen den Orten von L- und M-Rezeptoren (mit unregelmäßiger Anordnung). Die Form des Dendritenbaumes legt nahe, dass nur Bipolarzellen kontaktiert werden, die mit einem bestimmten Rezeptortyp verbunden sind, hier L-Rezeptoren. Modellrechnungen auf der Basis anatomisch beobachteter, unregelmäßiger Verteilungen bestätigen diese Vermutung. (Reprinted by permission from Nature (410:933-936) copyright (2001) Macmillan Magazines Ltd.)

Verantwortlich für diese Presseinformation:

Dr. Christoph Nothdurft
Max-Planck-Institut für biophysikalische Chemie
Presse- und Öffentlichkeitsarbeit
37070 Göttingen
Tel.: 05 51 / 2 01 - 16 41
Fax: 05 51 / 2 01 - 11 51
E-Mail: hnothdu@gwdg.de

Weitere Informationen erhalten Sie von: Prof. Dr. Barry B. Lee
Max-Planck-Institut für biophysikalische Chemie
AG Primatennetzhaut und Farbensehen
37070 Göttingen
derzeit erreichbar unter:
SUNY, State College of Optometry
33 West 42nd St
New York, NY 10036-8003
Tel.: +1 - 21 27 80 - 51 49
E-Mail: blee@sunyopt.edu

Pressedienst |

Weitere Nachrichten aus der Kategorie Interdisziplinäre Forschung:

nachricht Bergamoten – Verlockung und Verhängnis für Tabakschwärmer
21.04.2017 | Max-Planck-Institut für chemische Ökologie

nachricht Resistiver Schaltmechanismus aufgeklärt
19.04.2017 | Forschungszentrum Jülich GmbH

Alle Nachrichten aus der Kategorie: Interdisziplinäre Forschung >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Immunzellen helfen bei elektrischer Reizleitung im Herzen

Erstmals elektrische Kopplung von Muskelzellen und Makrophagen im Herzen nachgewiesen / Erkenntnisse könnten neue Therapieansätze bei Herzinfarkt und Herzrhythmus-Störungen ermöglichen / Publikation am 20. April 2017 in Cell

Makrophagen, auch Fresszellen genannt, sind Teil des Immunsystems und spielen eine wesentliche Rolle in der Abwehr von Krankheitserregern und bei der...

Im Focus: Tief im Inneren von M87

Die Galaxie M87 enthält ein supermassereiches Schwarzes Loch von sechs Milliarden Sonnenmassen im Zentrum. Ihr leuchtkräftiger Jet dominiert das beobachtete Spektrum über einen Frequenzbereich von 10 Größenordnungen. Aufgrund ihrer Nähe, des ausgeprägten Jets und des sehr massereichen Schwarzen Lochs stellt M87 ein ideales Laboratorium dar, um die Entstehung, Beschleunigung und Bündelung der Materie in relativistischen Jets zu erforschen. Ein Forscherteam unter der Leitung von Silke Britzen vom MPIfR Bonn liefert Hinweise für die Verbindung von Akkretionsscheibe und Jet von M87 durch turbulente Prozesse und damit neue Erkenntnisse für das Problem des Ursprungs von astrophysikalischen Jets.

Supermassereiche Schwarze Löcher in den Zentren von Galaxien sind eines der rätselhaftesten Phänomene in der modernen Astrophysik. Ihr gewaltiger...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: Neu entdeckter Exoplanet könnte bester Kandidat für die Suche nach Leben sein

Supererde in bewohnbarer Zone um aktivitätsschwachen roten Zwergstern gefunden

Ein Exoplanet, der 40 Lichtjahre von der Erde entfernt einen roten Zwergstern umkreist, könnte in naher Zukunft der beste Ort sein, um außerhalb des...

Im Focus: Resistiver Schaltmechanismus aufgeklärt

Sie erlauben energiesparendes Schalten innerhalb von Nanosekunden, und die gespeicherten Informationen bleiben auf Dauer erhalten: ReRAM-Speicher gelten als Hoffnungsträger für die Datenspeicher der Zukunft.

Wie ReRAM-Zellen genau funktionieren, ist jedoch bisher nicht vollständig verstanden. Insbesondere die Details der ablaufenden chemischen Reaktionen geben den...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Smart-Data-Forschung auf dem Weg in die wirtschaftliche Praxis

21.04.2017 | Veranstaltungen

Baukultur: Mehr Qualität durch Gestaltungsbeiräte

21.04.2017 | Veranstaltungen

Licht - ein Werkzeug für die Laborbranche

20.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Intelligenter Werkstattwagen unterstützt Mensch in der Produktion

21.04.2017 | HANNOVER MESSE

Forschungszentrum Jülich auf der Hannover Messe 2017

21.04.2017 | HANNOVER MESSE

Smart-Data-Forschung auf dem Weg in die wirtschaftliche Praxis

21.04.2017 | Veranstaltungsnachrichten