Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Farbensehen am Rand des Gesichtsfelds

04.05.2001


Wissenschaftler aus Göttingen, Sydney und New York

haben herausgefunden, wie Farbreize im äußeren Gesichtsfeldbereich verarbeitet werden. Während die meisten Menschen Farben bei direktem Hinsehen gut unterscheiden können, nimmt die Farbwahrnehmung zur
Peripherie des Auges hin deutlich ab. Liegt das an einer ungenauen Verschaltung der Farbrezeptoren in der Netzhaut des Auges oder an der weiteren Verarbeitung von Farbsignalen im Gehirn? Das war lange eine offene Frage. Ein Team um Prof. Dr. Barry Lee am Max-Planck-Institut für biophysikalische Chemie in Göttingen hat nun nachgewiesen, dass auch in Randbereichen des Gesichtsfelds die Nervenzellen im Auge noch farbspezifisch reagieren. Der Verlust der Farbwahrnehmung im äußeren Gesichtsfeld muss also im Gehirn passieren. (Martin, Lee, White, Solomon, & Rüttiger, Nature 410, 933-936 (2001) )

Das menschliche Sehsystem enthält zwei unterschiedliche, jeweils kontrastierende Farbkanäle (rot-grün und blau-gelb), in denen unsere gesamte Farbwahrnehmung repräsentiert ist. Das blau-gelbe System ist bei den Säugetieren entwicklungsgeschichtlich alt, das rot-grüne System kommt dagegen nur bei Affen und Menschen vor - andere Säugetiere sind rot-grün-farbenblind. Die Farbkanäle kommen durch die drei Gruppen von Photorezeptoren zustande, die nur bei Tageslicht reagieren (sogenannte "Zäpfchen") und vorwiegend Licht kurzer Wellenlänge (S, blau), mittel- (M, grün-gelb) oder langwelliges Licht (L, rot) absorbieren; andere Säugetiere als Affen und Menschen besitzen nur M-Rezeptoren. Durch Kombination dieser Signale entstehen die beiden Farbkanäle: +S-(M+L) ergibt den blau-gelben Farbkanal, +M-L (und +L-M) den rot-grünen. Diese Verrechnung erfolgt schon bald hinter den Rezeptoren, noch in der Augennetzhaut (Retina).

Die anatomischen Grundlagen dieser Verschaltung sind für den blau-gelben Farbkanal verstanden, aber die Grundlage des Rot-Grün-Kanals ist noch unsicher. Man weiß, dass das verantwortliche Zellsystem in der Augennetzhaut die sogenannten "midget cells" (Zwergzellen) sind. Im zentralen Gesichtsfeld ist ein einzelner M- oder L-Rezeptor auf eine einzelne bipolare Zelle des "midget cell"-Systems verschaltet, und dann weiter auf eine einzelne Ganglionzelle, die ihre Signale zum Gehirn sendet. Entweder reicht diese spezifische Verschaltung aus, dass Rot-Grün-Farbsignale die Hirnrinde erreichen, oder es muss weitere Verschaltungsmechanismen im Auge geben, die das rot-grüne Farbsignal spezifisch herausfiltern. Nach solchen Mechanismen hat man anatomisch gesucht, sie aber nicht gefunden.

Ein kritischer Test, um diese beiden Hypothesen zur unterscheiden, ist das Farbensehen in Randbereichen der Retina, in Gesichtsfeldbereichen 20-30º von der Mitte entfernt. Hier sieht es so aus, als ob die spezifische Verbindung des "midget cell"-Systems zusammengebrochen ist; jede Ganglionzelle hat Kontakt mit etwa 20-30 verschiedenen Rezeptoren. Ohne die spezifische Verbindung einzelner Rezeptorentypen auf dieselbe Zelle sollten diese peripheren Zellen daher nicht rot-grün farbempfindlich sein. Bei Affen und Menschen ist die Farbempfindlichkeit im äußeren Gesichtsfeldbereich tatsächlich deutlich verringert, und man hat dies eben darauf zurückgeführt, dass die zelluläre Grundlage für eine Rot-Grün-Unterscheidung bereits auf retinaler Ebene verloren gegangen ist. Nur durch spezifische Verschaltungsmechanismen könnten diese Zellen ihre Rot-Grün-Empfindlichkeit beibehalten.

In einer Zusammenarbeit zwischen dem Max-Planck-Institut für biophysikalische Chemie in Göttingen, der Universität in Sydney, Australien, und dem State College für Optometrie in New York haben Wissenschaftler jetzt mit quantitativen Methoden die Rot-Grün-Farbempfindlichkeit von Ganglionzellen in Randbereichen der Augennetzhaut untersucht. Die Ergebnisse waren eindeutig: die Eigenschaften von peripheren Rot-Grün-Zellen waren denen von zentralen Rot-Grün-Zellen sehr ähnlich. Der Verlust der Farbempfindlichkeit im peripheren Gesichtsfeld muss also cortikalen Ursprung haben, d.h. durch die weitere Verarbeitung im Gehirn zustande kommen.

Der jetzt in Nature veröffentlichte Befund wirft die Frage auf, wie diese Zellen in der Retina anatomisch verschaltet sind. Die Dendritenbäume peripherer Zwerg-Ganglionzellen haben oft sehr unregelmäßige Form; in Modellrechnungen konnten die Autoren zeigen, dass diese Unregelmäßigkeiten einer spezifischen Auswahl von ausschließlich M- oder L-Rezeptoren entsprechen könnten - bisher dachte man, dass die verschiedenen Rezeptoren zufällig auf eine Ganglionzelle konvergieren. Zwei Mechanismen sind denkbar, wie sich solche spezifischen Verbindungen entwickeln könnten: entweder durch so genanntes Hebbsches Lernen während der frühen Entwicklung des visuellen Systems, z.B. wenn Säuglinge Farbreize sehen, oder durch biochemische Marker, die helfen, spezifische Verbindungen aufzubauen. Die letztere Möglichkeit erscheint zwar plausibler, aber die Gensequenzen der M- und L-Rezeptoren unterscheiden sich nur in wenigen Aminosäuren, so dass es schwer vorstellbar ist, wie ein solcher Marker generiert werden könnte. Dies herauszufinden ist eine Herausforderung für die weiteren Untersuchungen.

Abbildung: Die Dendritenbäume von Ganglienzellen in der Augennetzhaut sind gewöhnlich rund und empfangen Signale von allen Rezeptoren in ihrem Einzugsgebiet. Zur Peripherie hin sind die Dendritenbäume von "midget cells" aber oft unregelmäßig; das Bild zeigt eine Zelle mit einem extrem unregelmäßigen Dendritenbaum. Das anatomische Bild wurde einer (absichtlich verschwommenen) Abbildung der Rezeptorenverteilung überlagert; die blauen Felder markieren S-Rezeptoren (die regelmäßig angeordnet sind), die roten und grünen Felder entsprechen den Orten von L- und M-Rezeptoren (mit unregelmäßiger Anordnung). Die Form des Dendritenbaumes legt nahe, dass nur Bipolarzellen kontaktiert werden, die mit einem bestimmten Rezeptortyp verbunden sind, hier L-Rezeptoren. Modellrechnungen auf der Basis anatomisch beobachteter, unregelmäßiger Verteilungen bestätigen diese Vermutung. (Reprinted by permission from Nature (410:933-936) copyright (2001) Macmillan Magazines Ltd.)

Verantwortlich für diese Presseinformation:

Dr. Christoph Nothdurft
Max-Planck-Institut für biophysikalische Chemie
Presse- und Öffentlichkeitsarbeit
37070 Göttingen
Tel.: 05 51 / 2 01 - 16 41
Fax: 05 51 / 2 01 - 11 51
E-Mail: hnothdu@gwdg.de

Weitere Informationen erhalten Sie von: Prof. Dr. Barry B. Lee
Max-Planck-Institut für biophysikalische Chemie
AG Primatennetzhaut und Farbensehen
37070 Göttingen
derzeit erreichbar unter:
SUNY, State College of Optometry
33 West 42nd St
New York, NY 10036-8003
Tel.: +1 - 21 27 80 - 51 49
E-Mail: blee@sunyopt.edu

Pressedienst |

Weitere Nachrichten aus der Kategorie Interdisziplinäre Forschung:

nachricht Speiseröhrenkrebs einfacher erkennen
06.03.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Neues Labor für die Aufbautechnik von ultradünnen Mikrosystemen
21.02.2017 | Hahn-Schickard

Alle Nachrichten aus der Kategorie: Interdisziplinäre Forschung >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise