Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nanosohlen halten Schwergewichte an der Decke

24.09.2003


Das Elektronenmikroskop enthüllt jene spatelförmige Feinstrukturen, die an den Fußsohlen von Käfern, Fliegen, Spinnen und Geckos für Haftung auch an Decken oder Wänden sorgen. Interessanterweise nimmt die Größe der Strukturen mit wachsenden Körpergewicht ab, während im gleichen Maß die Dichte der Strukturen zunimmt.
Foto: Max-Planck-Institut für Metallforschung


Max-Planck-Forscher entdecken grundlegenden Mechanismus, der es Tieren erlaubt, sich mit winzigen Hafthärchen an den Füßen auch kopfüber zu bewegen

... mehr zu:
»Gecko »Haftung

Biologische Haftungsmechanismen werden von der Nano- bis zur Mikroskala durch ein einfaches Gesetz bestimmt, dem Biologen und Materialforscher am Max-Planck-Institut für Metallforschung auf die Spur gekommen sind. Eduard Arzt, Stanislav Gorb und Ralph Spolenak beschreiben in der neuen Ausgabe der "Proceedings of the National Academy of Sciences" (PNAS, September 16, 2003, vol. 100, no. 19, 10603-10606), wie die Anzahl und Dichte der Härchen an den Fußsohlen von Käfern, Fliegen, Spinnen oder Geckos sich auf ihre Haftung auswirkt, so dass sie an den Wänden empor und an der Decke spazieren können. Die Forscher fanden eine simplen mathematischen Zusammenhang: Je größer das Körpergewicht einer Tiergruppe, desto kleiner und zahlreicher sind die Haftkontakte. Diese Forschungsergebnisse bergen ein großes Anwendungspotential für jede Art von Befestigungen, von wieder verwendbarem selbst haftendem Klebeband bis zu komplexen Kletterrobotern.

Viele Lebewesen, die im Stande sind, ihr eigenes Gewicht zu halten, wenn sie an der Decke hängen, vertrauen auf sehr feine Hafthärchen. Stanislav Gorb, der als Biologe an dem materialwissenschaftlich ausgerichteten Max-Planck-Institut für Metallforschung in Stuttgart arbeitet, hat diese Härchen mit unterschiedlichen Mikroskopie-Techniken bei Käfern, Fliegen, Spinnen und sogar Geckos untersucht. Die Quintessenz seiner Untersuchungen war: Je größer (schwerer) eine Tierart ist, desto feiner sind seine Haftstrukturen. Vom Käfer, dessen Hafthärchen nur ungefähr zehn Mikrometer im Durchmesser messen, also nur einem Zehntel des menschlichen Haares, bis hin zum Gecko, dessen Härchen noch einmal um den Faktor Hundert kleiner sind, findet man in der Natur die ausgeklügeltsten Haftsysteme. Der Gecko ist sogar schon ein Beispiel für Nanotechnologie in der Natur.


Um nun von der Natur lernen zu können, muss man die der Haftung zugrunde liegenden Mechanismen verstehen. Die Teamarbeit zwischen dem Biologen Stanislav Gorb und den Materialforschern Ralph Spolenak und Eduard Arzt als Materialforschern ergab dafür die richtige Kombination: Es stellte sich nämlich heraus, dass sich das Haftungsverhalten der Tiere mit der Klassische Kontaktmechanik, mit der man eigentlich die Haftung von Kugeln auf glatten Oberflächen beschreibt und die auf den so genannten Van-der-Waals Kräften beruht, erklären lässt. Da die Haftkraft des Einzelkontakts mit dem Umfang skaliert, führt die Aufspaltung größerer Einzelkontakte in immer mehr Subkontakte dazu, dass die Effizienz des Kontaktsystems kontinuierlich steigt. Zwar nimmt die Haftkraft des Einzelkontakts ab, wenn man ihn verkleinert, doch dieser Effekt wird durch die wachsende Zahl an Haftkontakten bei weitem kompensiert. Die Haftfähigkeit von Lebewesen kann somit über fünf Größenordnungen im Gewichtsbereich von zehn Mikrogramm bis einhundert Gramm quantitativ beschrieben werden.

Diese Forschungsergebnisse sind von großer technologischer Relevanz: Sie zeigen, wie man durch feine Kontakthärchen kleberfreie Haftung erzielen kann. Hierbei kann der Mensch die Natur am Beispiel des Geckos sogar noch übertreffen, da das natürliche Limit für die dünnsten Haare (Durchmesser: ca. 200 Nanometer) technologisch heute schon unterschritten werden kann. "Wollte hingegen ein Mensch an der Decke laufen", meint Ralph Spolenak, "müssten sein Hände und Füße mit Haftstrukturen bedeckt sein, deren einzelne Härchen maximal 10 bis 20 Nanometer im Durchmesser haben dürften."

Für technische Anwendungen sind der Phantasie im Prinzip keine Grenzen gesetzt: Die Möglichkeiten reichen vom Kletterroboter über Haftbänder zum aufhängen von Bildern bis hin zu Anwendungen in Industrierobotern. Doch im Gegensatz zu konventionellen Klebebändern würden die neuen Haftstrukturen nicht mehr verschmutzen, und im Vergleich zu bisherigen Klettverschlüssen benötigen sie keinen Haftpartner mehr, denn sie haften auf allen Oberflächen von allein.

Zu diesen Forschungsergebnissen aus der Max-Planck-Gesellschaft gibt es auch kostenloses Filmmaterial als Magazinfassung inkl. Stock- und Footage, dass direkt beim Referat für Presse- und Öffentlichkeitsarbeit angefordert werden kann (s. Impressum).

Patentlösungen: Lernen von den Fliegen

Fliegen laufen Wände hoch, Spinnen sitzen an der Fensterscheibe, Geckos krabbeln die Zimmerdecke entlang: Was hält sie dort fest? Forscher am Max-Planck-Institut für Metallforschung in Stuttgart haben herausgefunden, was viele Tiere buchstäblich die Wände hochgehen lässt. Langfristiges Ziel der Stuttgarter Forscher: Sie wollen ein Verfahren finden, wie man Bauteile ohne Klebstoff fest miteinander verbinden, aber trotzdem leicht wieder lösen kann. Das könnte die Zukunft der Konstruktionstechnik revolutionieren, vom Flugzeugbau bis zur Mikrotechnik. Ihre Ergebnisse haben die Max-Planck-Forscher jetzt zum Patent angemeldet. LZ: 00:6:20 , Autorin: Anne Hoffmann, Berlin

Der Klettverschluss der Zukunft

Der Film taucht ein in die mikroskopisch kleine Welt der Insekten. Libellen bedienen sich einer Art Klettverschluss, um ihren Kopf am Körper zu fixieren, bei Rosenkäfern sind die Deckflügel auf diese Weise am Rücken befestigt. Die Tiere können diesen Klettverschluss Tausende Male benutzen, ohne dass er sich abnutzt. Im Film wird erläutert, wie diese technische Leistung der Insekten Materialforscher inspirierte. So werden wir diesen immer perfekt schließenden und niemals verfilzenden Mikroklettverschlüssen wahrscheinlich schon bald in unserem Alltag begegnen. LZ: 00:04:00, Autor: Jörg Moll, Berlin

Weitere Informationen erhalten Sie von:

Max-Planck-Institut für Metallforschung
Prof. Eduard Arzt
Tel. 0711 689 - 3411, Fax. - 3412
E-Mail: arzt@mf.mpg.de

Dr. Stanislav Gorb
E-Mail: gorb@mf.mpg.de

Dr. Ralph Spolenak
E-Mail: spolenak@mf.mpg.de

Prof. Eduard Arzt | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mf.mpg.de

Weitere Berichte zu: Gecko Haftung

Weitere Nachrichten aus der Kategorie Interdisziplinäre Forschung:

nachricht Mit Nanopartikel-Tandems gegen den Herzinfarkt
01.12.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Virtuelle Realität für Bakterien
01.12.2017 | Institute of Science and Technology Austria

Alle Nachrichten aus der Kategorie: Interdisziplinäre Forschung >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Immunsystem - Blutplättchen können mehr als bislang bekannt

LMU-Mediziner zeigen eine wichtige Funktion von Blutplättchen auf: Sie bewegen sich aktiv und interagieren mit Erregern.

Die aktive Rolle von Blutplättchen bei der Immunabwehr wurde bislang unterschätzt: Sie übernehmen mehr Funktionen als bekannt war. Das zeigt eine Studie von...

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Nanostrukturen steuern Wärmetransport: Bayreuther Forscher entdecken Verfahren zur Wärmeregulierung

Der Forschergruppe von Prof. Dr. Markus Retsch an der Universität Bayreuth ist es erstmals gelungen, die von der Temperatur abhängige Wärmeleitfähigkeit mit Hilfe von polymeren Materialien präzise zu steuern. In der Zeitschrift Science Advances werden diese fortschrittlichen, zunächst für Laboruntersuchungen hergestellten Funktionsmaterialien beschrieben. Die hiermit gewonnenen Erkenntnisse sind von großer Relevanz für die Entwicklung neuer Konzepte zur Wärmedämmung.

Von Schmetterlingsflügeln zu neuen Funktionsmaterialien

Im Focus: Lange Speicherung photonischer Quantenbits für globale Teleportation

Wissenschaftler am Max-Planck-Institut für Quantenoptik erreichen mit neuer Speichertechnik für photonische Quantenbits Kohärenzzeiten, welche die weltweite...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Call for Contributions: Tagung „Lehren und Lernen mit digitalen Medien“

15.12.2017 | Veranstaltungen

Die Stadt der Zukunft nachhaltig(er) gestalten: inter 3 stellt Projekte auf Konferenz vor

15.12.2017 | Veranstaltungen

Mit allen Sinnen! - Sensoren im Automobil

14.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Weltrekord: Jülicher Forscher simulieren Quantencomputer mit 46 Qubits

15.12.2017 | Informationstechnologie

Wackelpudding mit Gedächtnis – Verlaufsvorhersage für handelsübliche Lacke

15.12.2017 | Verfahrenstechnologie

Forscher vereinfachen Installation und Programmierung von Robotersystemen

15.12.2017 | Energie und Elektrotechnik