Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bonner beim InnoNet-Ideenwettbewerb erfolgreich

19.12.2000


Biologie und Kunststoffe - zwei Welten prallen aufeinander

Kunststoffabfälle tragen nicht gerade zur Verschönerung der Landschaft

bei. Die Überreste von manchem Gelage im Grünen kann man zum Leidwesen von Spaziergängern und Umweltschützern noch Jahre später unversehrt wiederfinden. Aber des einen Leid ist wie so oft des anderen Freud: Gerade die Stabilität von Kunststoff macht sich eine Arbeitsgruppe um Dr. Michael Keusgen vom Institut für Pharmazeutische Biologie der Universität Bonn seit vier Jahren zunutze. Die Bonner Forscher schaffen neue Kombinationen von biologischen und künstlichen Materialien. Ihr neuestes Projekt: die Entwicklung eines Hochleistungsmessgeräts für genetische Analysen, die in den nächsten drei Jahren mit vier Millionen Mark gefördert werden wird - davon stammt etwa die Hälfte aus öffentlichen Mitteln, den Rest stellen die beteiligten Unternehmen bereit.

Ziel des Projekts ist es, biologische Organismen wie beispielsweise Bakterien mit genanalytischen Methoden zu identifizieren. Dazu müssen die Proben zunächst filtriert werden, um die zu analysierenden Zellen anzureichern. Hier bringt Dr. Keusgen seine Erfahrung ein: Herzstück des Prototyps ist nämlich eine Kunststoffröhre, die mit biologisch aktiven Substanzen beschichtet ist. Bakterien bleiben auf der Oberfläche haften und werden so angereichert; dadurch wird eine größere Empfindlichkeit des Systems erzielt. Das Analysegerät soll später in der Medizin, im Pharma- und im Lebensmittel-Sektor zum Einsatz kommen.

An dem Verbundprojekt nehmen neben dem Bonner Forscherteam auch andere Hochschulforscher und sechs Biotechnologie-Firmen aus dem Köln-Bonner Raum teil. Sie gelangten mit ihrem Vorhaben beim InnoNet-Ideenwettbewerb des Bundesministeriums für Wirtschaft nach einem harten Auswahlverfahren unter die Top 20. Insgesamt waren fast 300 Projektskizzen eingereicht worden.

Vor vier Jahren hatte Dr. Keusgen damit begonnen, biologische Materialien auf Kunststoffe "loszulassen". Als Kunststoff wählte man damals Teflon - bekannt als Antihaftbeschichtung von Bratpfannen. Inzwischen konnten die Bonner Forscher zeigen, wie Teflon mit Proteinen, Zuckern und Enzymen dauerhaft und zuverlässig beschicht werden kann. Praxistauglichkeit haben diese Verbindungen bereits gezeigt: So wurden sie in einen Biosensor eingebaut, der zur Bestimmung des Wirkstoffs "Alliin" in Knoblauch eingesetzt wird.


Ansprechpartner: PD Dr. Michael Keusgen, Institut für Pharmazeutische Biologie, Telefon: 0228/73-2676; Telefax: 0228/73-3250, E-Mail: M.Keusgen@uni-bonn.de

Frank Luerweg | idw

Weitere Berichte zu: Biologie InnoNet-Ideenwettbewerb Kunststoff

Weitere Nachrichten aus der Kategorie Interdisziplinäre Forschung:

nachricht Neues Verbundprojekt erforscht die neurodegenerative Erkrankung Morbus Alzheimer
12.09.2017 | Universitätsklinikum Würzburg

nachricht Damit sich Mensch und Maschine besser verstehen
04.09.2017 | Technische Universität Chemnitz

Alle Nachrichten aus der Kategorie: Interdisziplinäre Forschung >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Legionellen? Nein danke!

25.09.2017 | Veranstaltungen

Posterblitz und neue Planeten

25.09.2017 | Veranstaltungen

Hochschule Karlsruhe richtet internationale Konferenz mit Schwerpunkt Informatik aus

25.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy